Understanding Offline Political Systems by Mining Online Political Data

David Lazer
Northeastern \& Harvard
d.lazer@neu.edu

Oren Tsur
Northeastern \& Harvard orentsur@seas.harvard.edu

Tina Eliassi-Rad
Northeastern \& Rutgers
tina@eliassi.org

Outline

9:00-9:50	David	Political inquiry, new science of politics, exemplary data
$9: 50-10: 30$	Oren	Exponential Random Graph Models
$10: 30-11: 00$		Coffee Break
$11: 00-11: 20$	Oren	Networks of political figures on Twitter
$11: 20-11: 50$	Tina	Roles in socio-political networks
$11: 50-12: 00$	David	Wrap-up \& questions

Outline

9:00-9:50	David	Political inquiry, new science of politics, exemplary data
$9: 50-10: 30$	Oren	Exponential Random Graph Models
$10: 30-11: 00$		Coffee Break
$11: 00-11: 20$	Oren	Networks of political figures on Twitter
$11: 20-11: 50$	Tina	Roles in socio-political networks
$11: 50-12: 00$	David	Wrap-up \& questions

Using Big Data to Understand Politics

David Lazer

Northeastern/Harvard

Outline

- Some big themes in politics
- The opportunity to create a new science of politics
- Exemplar data
- Cautionary tales

Big themes in politics

- Collective action
- Political communication
- Power

The paradox of collective action

The paradox of collective action

- Social movements
- Voting
- Contributing to campaigns
- Vaccination

Why?

- "Selective benefits/penalties"
- Solidarity
- Norms

Political communication

THE GETTYSBURG ADDRESS

November 19, 1863

At the Dedication of the Soldiers' National Cemetery in Gettysburg, Pennsylvania:
Four score and seven years ago our fathers brought forth on this continent, a new nation, conceived in Liberty, and dedicated to the proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure. We are met on a great battle-field of that war. We have come to dedicate a portion of that field, as a final resting place for those who here gave their lives that that nation might live. It is altogether fitting and proper that we should do this.

But, in a larger sense, we can not dedicate - we can not consecrate - we can not hallow - this ground. The brave men, living and dead, who struggled here, have consecrated it, far above our poor power to add or detract. The world will little note, nor long remember what we say here, but it can never forget what they did here. It is for us the living, rather, to be dedicated here to the unfinished work which they who fought here have thus far so nobly advanced. It is rather for us to be here dedicated to the great task remaining before us - that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion - that we here highly resolve that these dead shall not have died in vain - that this nation, under God, shall have a new birth of freedom - and that government of the people, by the people, for the people, shall not perish from the earth.

The construction of language in politics

- Testing of different linguistic constructions ("estate taxes" vs "death taxes")
- Surveys, focus groups, etc
- Process of dissemination to elites
- Re-dissemination via media

Three dimensions of power (Lukes)

- Decision making: When A gets B to do something B otherwise would not do.
- Agenda setting: what is and is not discussed.
- Normative influence: what you think is in your interest

Time for a new science of politics

- Most social science is:
- Static
- Spatially and socially decontextualized
- And small scale (hundreds or thousands of individuals)

Time for a new science of politics

- The new science of politics
- dynamic
- Spatially and socially embedded
- And societal or even globally spanning

Exemplar big data

- \$ in politics
- Political language

Federal elections commission data

FEC data

- Contributor name
- Occupation
- Employer
- Address/zip of contributor
- Receiving committee (unique id)
- Donation amount
- Date
- http://www.fec.gov/finance/disclosure/ftpdet.shtml

And inferred network among contributors

Los Angeles

From Ruths and Lazer (2009)

Inferred relationships...

- Boston
- Ryan Vincent \& Carla Meyer - board members
- Washington DC
- Ed Rogers \& Lanny Griffith - partners in lobbying firm
- Los Angeles
- Spielberg \& Katzenberg - film producers
- NYC
- Debra Black \& Judith Hannan - board members

FYI, new \$ data..

- Federal Election Commission data do not have unique identifiers...
- And disambiguation is a big barrier to doing anything with the data
- So we synthesized unique identifiers
- http://politicalcents.cs.mcgill.ca/

Political language

- Myriad of sources...
- Public statements data from Votesmart

osama bin laden

on the web press releases

Press Releases

Home/News \& Events/Press Releases Print	Related	
May 2, 2011	, Press Relee	
	, Audio Clip	
Snowe Statement on Death of Osama Bin Laden	, Video Clip.	
WASHINGTON, D.C. - U.S. Senator Olympia J. Snowe (R-Maine), a senior member of the Senate Select Committee on Intelligence, released the following statement on the death of Osama bin Laden:		
	Join My	
Confimed that Osama bin Laden - - who was responsible for the single deadiliestatack on		
American soil - is dead.	$\\|_{\text {f }}$ Facebo	

Related Links
Press Releases

- Videos
- In the News

Audio

- Photo Gallery
E.Newsietters
- Opinions and Editorials
-Streaming Senate Video

News
May or 2011
Brown Statement On Osama Bin Laden WASHINGTON, DC-Today, U.S. Senator Scott Brown (R-1 on the death of Osama Bin Laden:
"This is a great day for America and our allies across the
finally gotten the justice he deserved. I commend Presif finally gotten the justice he deserved. I commend Presic
and the highly capable men and women in our military z and the highly capabie men and women in our military a victims of 9911 and their facilies, as well as those who
terrorism. Let this be a lesson that there is no sanctuary

Press Releases

Home / News Room / Press Releases
Press releases are archived according to their release date. For press releases by topic lease see the Issue Positions page.

May 012011
Hatch Statement on the Death of Osama bin Laden Salt Lake City- U.S. Senator Orrin Hatch (R-Utah) issued the following statement on the death of Osama bin Laden.
"Nearly 10 years after 3,000 innocent Americans were brutally killed on September 11 th, Osama bin Laden has been tracked down and killed. Our nation is built on the principle of liberty and justice for all - and today, justice was finally brought to one of the most ruthless

OP-EDS
OP-EDS
IN THE NEWS
IN THE NEW
SPEECHES SPEECHES
AUDIO CLIPS AUDIO CLIPS
VIDEO CLIPS

PRESS OFFICE

Murkowski Statement on the Death of Osama Bin Laden

WASHINGTON, D.C. - U.S. Sen. Lssa Murkowski, R-Alaska, tonight released the following statema Osama Bin Laden:

Tonight we learned Osama bin Laden is dead. The man was behind some of the most inhumar innocents in senerations - the worst of which beine the hateful $9 / 11$ attacks that killed near

Example

- Data
- 0.5 million documents from public statements of Members of US Congress from Votesmart
- Computational methods
- Tracking semantic convergence
- Randomized n-gram extraction

In a large corpus, multiple types of convergence

Together producing a "bumpy" distribution

Probability that two documents share an n gram

Shared topics

Length of n-grams

in theory

Shared topics

Probability that two documents share an n-gram
in data

8-gram (jaccard) similarity between document pairs

$$
\begin{array}{ll}
\text { House (R) } & \text { Senate (R) } \\
\text { House (D) } & \text { Senate (D) }
\end{array}
$$

4-gram

House (R) Senate (R)
House (D) Senate (D)

32-gram

Social media

- Twitter
-Facebook (?)
- Tumblr
- Anything you can scrape from the Web.
- Etc etc etc

But handle (big) data with care, a few quick lessons from the failure of Google Flu
 Trends

- Nobody can tell you're a dog on the Internet- and that's not a good thing if you are trying to understand humans.
- Value of curated data-sometimes < 1% of the data is way better than 100% of the data
- Algorithmic changes- e.g., algorithmic sorting in Facebook and Twitter
- Evolving norms- example of hashtags in Twitter

Example...

- Can we classify people as liberal or conservative based on the language they use?
- Answer: yes, lit suggests $90+\%$ accuracy is possible based on snapshots of language use.
- But: these findings turn out to be ephemeral (Cohen and Ruths ICWSM 2013)

Outline

9:00-9:50	David	Political inquiry, new science of politics, exemplary data
$9: 50-10: 30$	Oren	Exponential Random Graph Models
$10: 30-11: 00$		Coffee Break
$11: 00-11: 20$	Oren	Networks of political figures on Twitter
$11: 20-11: 50$	Tina	Roles in socio-political networks
$11: 50-12: 00$	David	Wrap-up \& questions

Outline

9:00-9:50	David	Political inquiry, new science of politics, exemplary data
$9: 50-10: 30$	Oren	Exponential Random Graph Models
$10: 30-11: 00$		Coffee Break
$11: 00-11: 20$	Oren	Networks of political figures on Twitter
$11: 20-11: 50$	Tina	Roles in socio-political networks
$11: 50-12: 00$	David	Wrap-up \& questions

Exponential Random Graph Models

Oren Tsur
Northeastern/Harvard

Available datasets

Types of "political" datasets

Publicly Available

General Public
 Demographics

ELECTIONS \& CANDIDATES

-0 OO intipi

Google

climate change a bunch of hooey		vanced Search
climate change a hoax	788,000 results	ts aveas Tocls
climate change a bunch of hooey	5,970 result	
climate change a wisconsin activity guide	31.100 results	
climate change a business revolution	289,000 resuls	
climate change a lie	501,000 results	
climate change a myth	1,300,000 resuls	
climate change a scam	1,840,000 results	
climate change a guide to carbon law and practice	111,000 results	
climate change a guide to co2 sequestration	9.830 results	
climate change a multidisciplinary approach	113,000 results done	

Example: "Money Talks"

- Finding network/cluster/community similarities btw. contributions networks and speech.

Networks - Informal Introduction

A political setting

Is this a random network?

Network analysis

- Given a network
- Link prediction
- Community detection
- Role discovery
- Network dynamics
- Evolution
- Contagion, diffusion, cascades
- Network formation
- Social factors for the above

Networks Basics

Is this a random network?

Likelihood of an observed graph

Given $|\mathrm{N}|=12$ and $|E|=13$ (directed)

- There are $2 \cdot\binom{12}{2}=132$ options for edge placement
- Edges are distributed independently
- So the number of possible graphs is $\binom{132}{13}=3.22 \times 10^{17}$
- All of these graphs are equally likely...

Erdos-Renyi networks:

A generative-probabilistic approach

- We assume edge independence.
- Edges are generated by a Bernoulli process with a parameter p.
- We generate a graph $G(N, p)$ by:
- For each ordered pair (u, v) of nodes from N :
- $E+=(u, v)$ with a probability p
- Each graph with n nodes and m edges has the following likelihood:

$$
p^{m} \cdot(1-p)^{2 \cdot\left(\frac{n}{n}\right)-m}
$$

Terminology: "Graphs" vs. "Networks"

[informal:]

- Graphs are mathematical (topological) concepts defined by nodes and edges.
- [Social] Networks represent the outcome of some social process (can be dynamic)
- In networks we care about dependency between nodes and edges.

Networks are not "random" graphs

- Goal: Find a plausible (and interesting) model explaining the creation of an observed network.
- Assumptions (for simplicity):
- Observed network is fixed.
- Edge formation is not random
- Network was generated based on latent factors
- We can speculate about the factors:
- Common sense
- Social science theory
- Guess in the wild

Exponential Random Graph Models (ERGM)

- General form:

$$
\operatorname{Pr}(Y=y)=\left(\frac{1}{k}\right) \quad \exp \sum_{A} \theta_{A} g_{A}(y)
$$

- Where:
- A is a specific "configuration" (e.g. reciprocity)
- θ_{A} is a parameter corresponding to configuration A .
- $g_{A}(y)=\prod_{v_{e=1}} y_{n}$ the network statistic corresponding to A.
- $\left.y_{i j} \in 0,1\right] \quad 1$ iff the $i j$ edge is observed in y.
- For simplicity we generalize g and A (sum on edges inst. mult)
- k is a normalization factor, making the general form a proper probability distribution.

Example of some model features

- General form: $\quad \operatorname{Pr}(Y=y)=\left(\frac{1}{k}\right) \exp \sum_{A} \theta_{A} g_{A}(y)$
- Baseline model (Erdos Renyi): $\quad \operatorname{Pr}(Y=y)=\left(\frac{1}{k}\right) \exp \sum_{i j} \theta y_{i j}$
- Examples for other terms:
- Formal leadership (nodal): $\sum_{i j, j \in \text { Leaders }} \theta_{\text {leadership }} y_{i j}$
- Reciprocity (dyad): $\quad \sum_{i j} \theta_{\text {reciprocity }} y_{i j} y_{j i}$
- Cyclic triad (dyad): $\quad \sum_{i j k} \theta_{c \text { criad }} y_{i j} y_{j k} y_{k i}$
- So "simple" toy model to estimate:

$$
\operatorname{Pr}(Y=y)=\left(\frac{1}{k}\right) \quad \exp \sum_{A} \theta_{A} g_{A}(y)=\left(\frac{1}{k}\right) \quad \exp \left(\sum_{i j} \theta y_{i j}+\sum_{i j, j \in \text { Leaders }} \theta_{\text {leadesship }} y_{i j}+\sum_{i j} \theta_{\text {reciprociy }} y_{i j} y_{j i}+\sum_{i j k} \theta_{c \text { criad }} y_{i j} y_{j k} y_{k i}\right)
$$

Parameter estimation

- Markov Chain Monte Carlo
- Metropolis Hastings
- [There are other algs + new developments]
- Issues:
- Degeneracy
- Stability (over subsampling, incomplete networks, thresholding)
- No direct temporal modeling
- Not suitable for large network (estimation is problematic)
- Interpretation needed

ERGM resources

- MCMC estimation of ERGMs
- http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
- R packages: statnet, network, ergm
- ERGM introduction, package documentation and examples
- https://cran.r-project.org/web/packages/ergm/vignettes/ergm.pdf
- [New] Generalized-ERGM (+beta implementation)
- http://arxiv.org/pdf/1505.04015.pdf
- Many other tutorials, variations and examples (online)

Outine

9:00-9:50	David	Political inquiry, new science of politics, exemplary data
$9: 50-10: 30$	Oren	Exponential Random Graph Models
$10: 30-11: 00$		Coffee Break
$11: 00-11: 20$	Oren	Networks of political figures on Twitter
$11: 20-11: 50$	Tina	Roles in socio-political networks
$11: 50-12: 00$	David	Wrap-up \& questions

Outline

9:00-9:50	David	Political inquiry, new science of politics, exemplary data
$9: 50-10: 30$	Oren	Exponential Random Graph Models
$10: 30-11: 00$		Coffee Break
$11: 00-11: 20$	Oren	Networks of political figures on Twitter
$11: 20-11: 50$	Tina	Roles in socio-political networks
$11: 50-12: 00$	David	Wrap-up \& questions

Data

Political Twitter

- 6 month full stream
- 158817 tweets
- Graph is directed
- Edge threshold (@>3)
- 439 Members of 114th Congress (Current)
- |E| = 9167 (after thresholding)

Joint Statements (JS)

- Full term (112th congress)
- 8979 statements
- Graph is undirected
- Edge threshold: normalized-weighted
- 435 members of 112th Congress (2011-13)
- |E| = 3188 (after thresholding)

Model features (factors/terms)

Nodal Factors

- Party
- Age
- Gender
- Seniority (terms in congress)
- State, region, district
- Formal leadership position
- Committee membership

Dyad Factors

- Reciprocity
- Cyclic triads
- Transitive triads
- Shared committee membership
- In/out-star

Members of U.S. Congress (Twitter)

6 month, 1590 K tweets directed, by @, threshold=3

Members of U.S. Congress (Twitter)

Members of U.S. Congress (Twitter)

Research questions

- What latent factors dominate link formation?
- Does network analysis fit with what we know (Political Science theory, other quant. works)?

ERGM results

- Significant:
- Reciprocity matters
- Seniority matters
- Cyclic triads
- Not found significant (surprising):
- Partisan homophily

- Formal leadership role
- We checked for other terms, e.g.:
- Gender
- State
- Region
- Committee membership network

ERGM results - Twitter

Significant factors in nodal (independent) model:

- Number of edges (Bernoulli)
- Seniority (senior members attract incoming nodes)
- Surprising: state, party, shared committees and formal leadership were not found significant.
Significant dyadic (dependent) factors:
- Reciprocity (could this be a bias of the @ mechanism?)
- 2-in-star
- Cyclic-triads
- Transitive-triads term yielded degenerate models
- Seniority significance disappeared after introducing dyadic factors
- Probably covered by the 2-in-star

Interpretation (1)

- Seniority matters
- Reciprocity rules (in politics; in conversing; in life?)
- Leadership is not a factor (masked by seniority?!)

But:

- This is not aligned with the JS network
- Lack of seniority is a significant factor (new members are connected)
- Leadership is a significant factor
- Why? (Is there a political scientist in the room?)
- Technical: different networks (directed, vs. undirected)
- Social 1: different networks ("wild" vs. collaborative by definition)
- Social 2: different social processes shape different network dynamics

Interpretation (cont.)

But

- Leadership (speakers, whips, majority/minority leader) has high/top centrality in relevant centrality measures (in/out/deg, betweenness)

And

- In a frame of mind (Tsur et al. ACL 2015), we find:
- strong partisanship even in subtle topics (=framing campaigns)
- Strong party discipline (stronger for Republicans)

Living happily ever after?!

Partisan divergence and discipline

Top 20 Hashtags per Party

Partisan divergence and discipline

Top 20 Hashtags per Party

Partisan divergence and discipline

Top 20 Hashtags per Party

Partisan divergence and discipline

Top 20 Hashtags per Party

Leadership and sub-communities

- Leadership is central in the Twitter network.
- Even in marginal "campaigns"
- Involving 20% of the party members

Collaborative partisan hashtagging

\%party users	ht_D	ht_R	sum_D	sum_R	avg_D	avg_ \mathbf{R}
$[0.02,0.05]$	724	419	8154	6359	11	15
$[0.05,0.10]$	179	110	5010	4875	27	44
$[0.10,0.20]$	91	54	4897	5442	53	100
$[0.20,0.30]$	48	15	5575	3843	116	256
$[0.30,0.40]$	18	9	2718	3132	151	348
$[0.40,0.50]$	14	3	3229	1837	230	612
$[0.50,0.60]$	9	0	3141	0	349	0
$[0.60,0.70]$	2	1	1706	1514	853	1514
$[0.70,0.80]$	1	0	918	0	918	0
$[0.80,0.90]$	0	0	0	0	0	0

- Democrat use more hashtags, less effectively
- Republicans have higher average uses per member in ALL ranges
- In line with findings at Tsur et al. ACL 2015

Workshop Announcements

2 WS on NLP and Computational Social Science (NLP+CCS):

- WebSci - Hannover, Germany, May 2016
(deadline: March 25)
- EMNLP - Austin, Texas, November 2016
(deadline: TBA)

Politics and networks

- Political Networks (PolNets) - St. Louis, Missouri, June, 2016

Abstract based. (deadline: April 15)

Outline

9:00-9:50	David	Political inquiry, new science of politics, exemplary data
$9: 50-10: 30$	Oren	Exponential Random Graph Models
$10: 30-11: 00$		Coffee Break
$11: 00-11: 20$	Oren	Networks of political figures on Twitter
$11: 20-11: 50$	Tina	Roles in socio-political networks
$11: 50-12: 00$	David	Wrap-up \& questions

Roles in Socio-Political Data

Tina Eliassi-Rad
Northeastern/Rutgers

A network is an eco-system

- Individuals have a mixture of roles in this ecosystem
- Roles $=$ functions $=$ positions
- Roles are defined in terms of structural behaviors
- What is your connectivity pattern?
- To what kinds of individuals are you connected?

Intuition: Types of neighbors matter

Node sizes indicate communication volume relative to the central node in each frame.

Finding roles in a network

```
Input
M Node }\times\mathrm{ Node 
```

n dim space

Finding roles in a network

Finding roles in a network

Finding roles in a network

f dim space

Add guidance encoded as constraints on role assignments or role definitions

r dim space Output

$$
n \gg f \gg r
$$

Big-data business-partnerships

Roles \& communities are complementary

- Roles group nodes with similar structural properties
- Communities group nodes that are well-connected to each other

Moving beyond simple networks

- Suppose you have a multi-relational networks
- Example: Congressional co-sponsorship data

No longer have an adjacency matrix

- We have a person \times person \times committee tensor
- Entry at (i, j, k) indicates how often congress-person i and j co-sponsored a bill that was sent to committee k for a particular congressional committee

Finding roles in a multi-relational network

- Multi-relational Role Discovery (MRD)
- No orthogonality constraint on factors
- Nonnegative Tucker decomposition
- Alternating least squares

Finding roles in a multi-relational network

- Multi-relational Role Discovery (MRD)
- No orthogonality constraint on factors
- Nonnegative Tucker decomposition
- Alternating least squares

MRD Algorithm

Algorithm 1 Multi-relational Role Discovery (MRD) using Alternating Least Squares Nonnegative Tucker decomposition.
1: Initialize $\mathbf{G}, \mathbf{F}, \mathbf{R}$ and \mathcal{H} to any non-negative values
2: while Stop condition not met do
3: $\quad \mathbf{G} \leftarrow \underset{\mathbf{G} \geq \mathbf{0}}{\operatorname{argmin}}\left\|\mathcal{V}_{G}-\mathbf{G} \mathcal{H}_{G}(\mathbf{R} \otimes \mathbf{F})^{T}\right\|_{\text {Fro }}$
4: Normalize the columns of \mathbf{G}
5: $\quad \mathbf{F} \leftarrow \underset{\mathbf{F} \geq \mathbf{0}}{\operatorname{argmin}}\left\|\mathcal{V}_{F}-\mathbf{F} \mathcal{H}_{F}(\mathbf{R} \otimes \mathbf{G})^{T}\right\|_{F r o}$
6: Normalize the columns of \mathbf{F}
7: $\quad \mathbf{R} \leftarrow \underset{\mathbf{R} \geq \mathbf{0}}{\operatorname{argmin}}\left\|\mathcal{V}_{R}-\mathbf{R} \mathcal{H}_{R}(\mathbf{F} \otimes \mathbf{G})^{T}\right\|_{\text {Fro }}$
8: \quad Normalize the columns of \mathbf{R}
9: $\quad \mathcal{H} \leftarrow \underset{\mathcal{H} \geq \mathbf{0}}{\operatorname{argmin}}\|\operatorname{vec}(\mathcal{V})-(\mathbf{R} \otimes \mathbf{F} \otimes \mathbf{G}) \operatorname{vec}(\mathcal{H})\|_{\text {Fro }}$
10: end while
11: return $\mathbf{G}, \mathbf{F}, \mathbf{R}, \mathcal{H}$

Experiments

- Data from U.S. House of Representatives
- Bill co-sponsorship data from 1979 (the start of the $96{ }^{\text {th }}$ Congress) to 2009 (the end of the $110^{\text {th }}$ Congress)
- 15 committees, for which there were legislation in each congress from $96^{\text {th }}$ to $110^{\text {th }}$
- $110^{\text {th }}$ Congress (from 2007-09)
- 453 representatives \& 10,613 bills
- Average degree in aggregated graph $=8.37$
- Median value of average degree across committee co-sponsorship graphs $=0.48$

Sci \& Tech
Judiciary
Ways \& Means
VA
Small Business
Budget
Oversight \& Gov't Reform
Agriculture
Appropriations
Rules
Natural Resources
Financial Services
Education \& Labor
 Infrastructure
Energy \& Commerce

Model order selection

- Can do model order selection with Tucker
- Morten Morup and Lars Kai Hansen. 2009. Automatic relevance determination for multi-way models. Journal of Chemometrics, 23: 352-363.
- Automatic relevance determination (ARD)
- A Bayesian approach that estimates the adequate degree of regularization
- In these experiments, we set the model order to a $5 \times 5 \times 5$ core

Role definitions

[MRD:
Gilpin et al., under review]

Role sense-making procedure

1. Run MRD to get the core and factor matrices: $\mathcal{V}_{1}, \mathcal{H}_{1}, G_{1}, R_{1}, F_{1}$.
2. Generate a new input tensor (nodes \times relations \times features), where the features are from a reference set of widely used and known features: V_{2}.
3. Use $\mathcal{V}_{2}, \mathcal{H}_{1}, G_{1}$, and F_{1} to compute a new R_{2} role definitions that make "sense" to a human.

Output: R_{2}, where roles are redefined in terms of a set of reference features each of which is normalized for comparison purposes

Role sense-making in the $110^{\text {th }}$ Congress

- Role 3: Power brokers, high on every features

Role sense-making in the $110^{\text {th }}$ Congress

- Role 1 \& Role 4:
- Both are path-y and on the periphery (high eccentricity values)
- Both have very low degrees
- But Role 4 nodes are more clique-y than Role 1 nodes (higher clust coeff) and less important (as measured by PageRank)

Role sense-making in the $110^{\text {th }}$ Congress

- Role 2 \& Role 5 :
- Both have high degrees and clust coeff
- But Role 5 nodes have higher weight and higher PageRank \rightarrow Role 5 folks co-sponsor with the same people more often

Relational topic definitions

[MRD:
Gilpin et al., under review]

Relational topics found

Topic 1: Ways \& Means, Financial Services

Topic 2: Rules, Appropriations, S\&T

Topic 3: Oversight \& Gov’t Reform, Education \& Labor, Judiciary

Relational Topic 3

Topic 4: Education \& Labor, Natural Resources, VA

Topic 5: Agriculture, S\&T, Natural Resources

Relational Topic 5

Group definitions

[MRD:
Gilpin et al., under review]

Groups of representatives

Group Members 1

Group 1 of representatives

Name	Party	Exp
Millender-McDonald	D	11
Obey, David	D	38
Tsongas, Niki	D	0
Speier, Jackie	D	0
Faleomavaega, Eni	D	18
Meehan, Martin	D	14
Edwards, Donna	D	0
Visclosky, Peter	D	22
Hoyer, Steny	D	26
Foster, Bill	D	0

More insights into Group 1

Group 1

Name	Party	Exp
Millender-McDonald	D	11
Obey, David	D	38
Tsongas, Niki	D	0
Speier, Jackie	D	0
Faleomavaega, Eni	D	18
Meehan, Martin	D	14
Edwards, Donna	D	0
Visclosky, Peter	D	22
Hoyer, Steny	D	26
Foster, Bill	D	0

Group 1

- Democrats; mostly not mid-career
- Active in oversight \& gov't reform
- On the periphery, but lots of triangles

Group 2

Name	Party	Exp
Hensarling, Jeb	R	4
Boehner, John	R	16
Thornberry, Mac	R	12
Broun, Paul	R	0
Shadegg, John	R	12
Hastert, Dennis	R	8
Scalise, Steve	R	11
Latta, Robert	R	6
Flake, Jeff	R	6
McCrery, Jim	R	14

Group 2

- Republicans
- Different topics
- Different roles

Group 3

Name	Party	Exp
Cooper, Jim	D	16
Johnson, Henry	D	0
Ryan, Tim	D	4
DeGette, Diana	D	10
Engel, Eliot L.	D	14
Doggett, Lloyd	D	12
Pastor, Ed	D	16
Meek, Kendrick	D	4
Murphy, C.	D	0
Crowley, Joseph	D	8

Group 3

- Democrats
- Same topic
- Different roles

Group 4

Name	Party	Exp
Hall, Ralph	R	16
Rodgers, Cathy	R	2
Myrick, Sue	R	12
Issa, Darrell	R	6
Drake, Thelma	R	2
Kuhl, Randy	R	2
Poe, Ted	R	2
Boozman, John	R	6
Conaway, Michael	R	2
Wamp, Zach	R	12

Group 4

- Republicans
- Active in Agriculture
- High degree \& very clique-y

Group 5

Name	Party	Exp
Jackson-Lee, Sheila	D	12
Cohen, Steve	D	0
Hare, Phil	D	0
Grijalva, Raul	D	4
English, Phil	R	12
Honda, Michael	D	6
McCotter, Thaddeus	R	4
Filner, Bob	D	14
Hinchey, Maurice	D	14
Gonzalez, Charles	D	8

Group 5

- Bipartisan
- Active in Agriculture
- Power brokers

Tucker core

[MRD:
Gilpin et al., under review]

Interaction graph from the Tucker core

Measure properties on the interaction graph

Property	Description	Computation
Simplicity	To what extent are nodes connected to (role) similar types of nodes?	Average Node Degree
Sharing	How much can a group be separated into independent parts?	Mincut cost
Variability	How does the simplicity of nodes vary across the interaction graph?	Variance of node degree
Stability	How stable are the interactions between roles, groups, and topics?	Spectral gap

Cut cost of the interaction graphs from Tucker cores

Role transfer (in this context)

- Roles extracted on one multi-relational network

- How well do the extracted roles transfer to another multirelational network?

$$
\stackrel{?}{\cong}
$$

Role transfer on multi-relational Networks

Heatmap of fit quality = 1 - normalized reconstruction error

Applications of role discovery

Task	Use Case
Role query	Identify individuals with similar behavior to a known target
Role outliers	Identify individuals with unusual behavior Role dynamics Identify unusual changes in behavior Re-identification
Identify individuals in an anonymized network	
Role transfer	Use knowledge of one network to make predictions in another
Network comparison Exploration in role space	Determine network compatibility for knowledge transfer Exploratory analysis of network data in the role space
\ldots	

Why are roles effective?

- Encode complex behavior
- Map nodes into a useful lower dimensional space
- Generalize across networks
- Common language over a common alphabet

Outline

9:00-9:50	David	Political inquiry, new science of politics, exemplary data
$9: 50-10: 30$	Oren	Exponential Random Graph Models
$10: 30-11: 00$		Coffee Break
$11: 00-11: 20$	Oren	Networks of political figures on Twitter
$11: 20-11: 50$	Tina	Roles in socio-political networks
$11: 50-12: 00$	David	Wrap-up \& questions

Wrap-up

- Tutorial website includes slides, resources (data \& code)
- http://bit.ly/1Qs8bIA

- Seize the opportunity to create a new science of politics

THANKS!

