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• Arthur Samuel coined 
the term machine 
learning (1959)

• Field of study that gives 
computers the ability to 
learn without being 
explicitly programmed 

• The Samuel Checkers-
playing Program
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The well-posed learning problem

• A computer program is said to learn
from experience E w.r.t. some task T 
and some performance measure P, if 
its performance on T, as measured by P, 
improves with experience E. 

-- Tom Mitchell (1997) 



Some “success” stories
• IBM Watson defeats the best human competitors in Jeopardy!

• Google AlphaGo Model defeats Euro Go Campaign

• Speech recognition: Amazon Alexa, Apple Siri, Google Go, …

• Image recognition

• Translation

• Fraud detection

• Self-driving cars

• Recommendation systems: Amazon, NetFlix, …



Racist Robots in the News
Nikon S630
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Bias in computer systems
(Friedman & Nissenbaum, 1996)

• Identified three sources of bias
1. Preexisting bias from social institutions, practices, and attitudes

2. Technical bias from technical constraints or considerations 

3. Emergent bias from context of use

• “We conclude by suggesting that freedom from bias should be 
counted among the select set of criteria—including reliability, 
accuracy, and efficiency—according to which the quality of 
systems in use in society should be judged.”

https://dl.acm.org/citation.cfm?id=230561



Lots of activity recently

• Autonomous Systems” by 
David Danks and Alex John London 
(IJCAI 2017)
• http://bit.ly/2zrdbnX

• UC Berkeley Course on Fairness in Machine Learning
• https://fairmlclass.github.io

• Fairness, accountability, and transparency
• FatML Conferences: https://www.fatml.org

Figure from https://fairmlclass.github.io



Can we make ML algorithms “fair”?

• Should we change 
• the task T, 
• the experience E, or 
• the performance measure P?



How do computer scientists define fairness?

• Probabilistically

• Lots of parity (i.e., “fairness”) definitions

• Decisions should be in some sense probabilistically independent of 
sensitive features values (such as gender, race)

• There are many possible senses



Lots of parity definitions
(Probabilistic definitions of different kinds of fairness)
• Demographic parity
• Accuracy parity
• True positive parity 
• False positive parity 
• Positive rate parity
• Precision parity
• Positive predictive value parity
• Negative predictive value parity
• Predictive value parity
• …

See https://fairmlclass.github.io for definitions.



Lots of parity definitions
(Probabilistic definitions of different kinds of fairness)
• Demographic parity: The output of the classifier does not depend on the 

sensitive attribute (e.g., gender, race, education level, etc).
• Accuracy parity
• True positive parity 
• False positive parity 
• Positive rate parity
• Precision parity
• Predictive value parity
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See https://fairmlclass.github.io for definitions.



Lots of parity definitions
(Probabilistic definitions of different kinds of fairness)
• Demographic parity
• Accuracy parity: The accuracy of the classifier does not depend on the 

sensitive attribute (e.g., gender, race, education level, etc).
• True positive parity 
• False positive parity 
• Positive rate parity
• Precision parity
• Predictive value parity
• …

See https://fairmlclass.github.io for definitions.



Confusion matrix
• Accuracy: How often is the classifier 

correct? (TP+TN)/total 

• Misclassification (a.k.a. Error) Rate: How 
often is it wrong? (FP+FN)/total 

• True Positive Rate (TPR, a.k.a. 
Sensitivity or Recall): When it's actually 
yes, how often does it predict yes? 
TP/actual yes 

• False Positive Rate (FPR) : When it's 
actually no, how often does it predict 
yes? FP/actual no

• Specificity (1 – FPR) : When it's actually 
no, how often does it predict no? 
TN/actual no 

• Precision (a.k.a. Positive Predictive 
Value): When it predicts yes, how often is 
it correct? TP/predicted yes 

• Negative Predictive Value: When it 
predicts no, how often is it correct? 
TN/predicted no

• Prevalence: How often does the yes 
condition actually occur in our sample? 
actual yes/total

http://bit.ly/2xApsRz 

Predicted: NO Predicted: YES
Actual: NO TN FP
Actual: YES FN TP
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What about the task T?

• The most popular task has been to asses risk estimates.
• Examples:
• Jack’s risk of defaulting on a loan is 8; Jill’s is 2.
• Ed’s risk of recidivism is 9; Peter’s is 1.
• …



Impossibility results L

• Kleinberg, Mullainathan, Raghavan (2016)

• https://arxiv.org/abs/1609.05807 

• Chouldechova (2016)

• https://arxiv.org/abs/1610.07524 

• You can’t have your cake and eat it too



Some definitions
• X contains features of an individual (e.g., medical records)

• X often incorporates all sorts of measurement biases

• A is a sensitive attribute (e.g., race, gender, ...)

• A is often unknown, ill-defined, misreported, or inferred

• Y is the true outcome (a.k.a. the ground truth; e.g., whether patient has 
cancer)

• C is the machine learning algorithm that uses X and A to predict the value 
of Y (e.g., predict whether the patient has cancer)

https://fairmlclass.github.io



Some simplifying assumptions

• The sensitive attribute A divides the population into two groups 
a (e.g., whites) and b (e.g., non-whites)

• The machine learning algorithm C outputs 0 (e.g., predicts not 
cancer) or 1 (e.g., predicts cancer)

• The true outcome Y is 0 (e.g., not cancer) or 1 (e.g., cancer)



Impossibility results

• Kleinberg, Mullainathan, Raghavan (2016), Chouldechova (2016) 
• Assume differing base rates – i.e., Pra (Y=1) ≠ Prb (Y=1) – and an 

imperfect machine learning algorithm (C ≠ Y), then you can not 
simultaneously achieve

a) Precision parity: Pra (Y=1∣C=1) = Prb (Y=1∣C=1).
b) True positive parity: Pra(C=1∣Y=1) = Prb (C=1∣Y=1) 
c) False positive parity: Pra(C=1∣Y=0) = Prb (C=1∣Y=0}
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These impossibility results also hold for overlapping groups. -- Eliassi-Rad & Fitelson (2018)



Impossibility results

• Kleinberg, Mullainathan, Raghavan (2016), Chouldechova (2016) 
• Assume differing base rates – i.e., Pra (Y=1) ≠ Prb (Y=1) – and an 

imperfect machine learning algorithm (C ≠ Y), then you can not 
simultaneously achieve

a) Precision parity: Pra (Y=1∣C=1) = Prb (Y=1∣C=1)
b) True positive parity: Pra(C=1∣Y=1) = Prb (C=1∣Y=1)
c) False positive parity: Pra(C=1∣Y=0) = Prb (C=1∣Y=0) 

“Equalized odds” -- Hardt, Price, Srebro (2016)



Variations on the impossibility result
Condition

Chouldechova
(2016)

Kleinberg et al. 
(2016)

Eliassi-Rad & 
Fitelson (2018)

Precision parity:  Pra(Y = 1 ∣ C = 1) = Prb(Y = 1 ∣ C = 1) YES YES YES

True positive parity:  Pra(C = 1 ∣ Y = 1) = Prb(C = 1 ∣ Y = 1) YES YES YES

False positive parity:  Pra(C = 1 ∣ Y = 0) = Prb(C = 1 ∣ Y = 0) YES YES YES

Unequal base rates:  Pra(Y = 1) ≠ Prb(Y = 1) YES YES YES

Mutual exclusivity between groups a and b YES YES NO

Statistical parity:  Pra(C = 1) = Prb(C = 1) YES NO NO

Imperfect classifier: Pra(C = 1 ∣ Y = 0) ≠ 0 and Prb(C = 1 ∣ Y = 0) ≠ 0 and
Pra(C = 1 ∣ Y = 1) ≠ 1 and Prb(C = 1 ∣ Y = 1) ≠ 1

YES YES

Non-identical variables: Pra(Y = 1 | C = 1) ≠ 0  or Prb(Y = 1 | C = 1) ≠ 0 YES YES
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Impossibility results
“Suppose we want to determine the risk that a person is a carrier for a disease Y, 
and suppose that a higher fraction of women than men are carriers. Then our 
results imply that in any test designed to estimate the probability that someone is 
a carrier of Y, at least one of the following undesirable properties must hold: (a) the 
test’s probability estimates are systematically skewed upward or downward for at 
least one gender; or (b) the test assigns a higher average risk estimate to healthy 
people (non-carriers) in one gender than the other; or (c) the test assigns a higher 
average risk estimate to carriers of the disease in one gender than the other. The 
point is that this trade-off among (a), (b), and (c) is not a fact about medicine; it is 
simply a fact about risk estimates when the base rates differ between two groups.” 
-- Kleinberg, Mullainathan, Raghavan (2016)
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Impossibility results
“Suppose we want to determine the risk that a person is a carrier for a disease Y, 
and suppose that a higher fraction of women than men are carriers. Then our 
results imply that in any test designed to estimate the probability that someone is 
a carrier of Y, at least one of the following undesirable properties must hold: (a) the 
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Impossibility results
“Suppose we want to determine the risk that a person is a carrier for a disease Y, 
and suppose that a higher fraction of women than men are carriers. Then our 
results imply that in any test designed to estimate the probability that someone is 
a carrier of Y, at least one of the following undesirable properties must hold: (a) the 
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simply a fact about risk estimates when the base rates differ between two groups.” 
-- Kleinberg, Mullainathan, Raghavan (2016)



Impossibility results
“Suppose we want to determine the risk that a person is a carrier for a disease Y, 
and suppose that a higher fraction of women than men are carriers. Then our 
results imply that in any test designed to estimate the probability that someone is 
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Impossibility results
“Suppose we want to determine the risk that a person is a carrier for a disease Y, 
and suppose that a higher fraction of women than men are carriers. Then our 
results imply that in any test designed to estimate the probability that someone is 
a carrier of Y, at least one of the following undesirable properties must hold: (a) the 
test’s probability estimates are systematically skewed upward or downward for at 
least one gender; or (b) the test assigns a higher average risk estimate to healthy 
people (non-carriers) in one gender than the other; or (c) the test assigns a higher 
average risk estimate to carriers of the disease in one gender than the other. The 
point is that this trade-off among (a), (b), and (c) is not a fact about medicine; it is 
simply a fact about risk estimates when the base rates differ between two 
groups.” -- Kleinberg, Mullainathan, Raghavan (2016)



ProPublica and NorthPointe

• ProPublica's main charge was that black defendants experienced 
higher false positive rate
• Northpointe's main defense was that their risk assessment 

scores satisfy precision parity: Pra (Y=1∣C=1) = Prb (Y=1∣C=1)
• Due to the impossibility results, Northpointe’s algorithm cannot 

satisfy “equalized odds” 
• Disproportionately high false positive rate for blacks

• Disproportionately high false negative rate for whites

https://fairmlclass.github.io



Fallout from the impossibility theorems
• Get rid of one of the parities
• Put bounds on the parities
• Deborah Hellman (University of Virginia Law School)
• Precision parity captures “what you ought to believe”
• True positive and false positive parities capture “what you ought 

to do”
• The algorithm ought not be thinking about the right-making 

properties when deliberating in many cases
è If you are going to drop a parity, drop precision parity

a) Precision parity: Pra (Y=1∣C=1) = Prb (Y=1∣C=1)

b) True positive parity: Pra(C=1∣Y=1) = Prb (C=1∣Y=1)

c) False positive parity: Pra(C=1∣Y=0) = Prb (C=1∣Y=0) 



Group vs. individual fairness 
• “Fairness through awareness” by Dwork, Hardt, Pitassi, 

Reingold, Zemel (2012)

• “People who are similar w.r.t. a specific (classification) task 
should be treated similarity.”

• Does not get around the impossibility results

• Assuming you have equal base rates, treating everyone equally 
is a good move 



Solutions considered from the machine 
learning side so far (1/2)
• Preprocessing or “massaging” the data to make it less biased 
• Learning fair representations: encode data while obfuscating sensitive 

attributes
• Penalize the algorithm to encourage it to learn fairly

• During training (e.g., through regularization or constraints) or as a post-
processing step

• Allow the sensitive attributes to be used during training, but do not make 
them available to the model during inference time



Solutions considered from the machine 
learning side so far (2/2)
• Causal modeling
• “Everything else being equal” cases
• Findings depend strongly on model 

and assumptions

• Excellent tutorial at NIPS 2017 by 
Solon Barocas and Moritz Hardt
• Slides: http://mrtz.org/nips17/
• Video: https://vimeo.com/248490141

http://mrtz.org/nips17/#/84



Humans vs. algorithms
• Julia Dressel and Hany Farid: The accuracy, fairness, and limits of predicting recidivism. 

Science Advances, 4(1), 17 Jan 2018.
• http://advances.sciencemag.org/content/4/1/eaao5580
• “Algorithms for predicting recidivism are commonly used to assess a criminal 

defendant’s likelihood of committing a crime. These predictions are used in pretrial, 
parole, and sentencing decisions. Proponents of these systems argue that big data 
and advanced machine learning make these analyses more accurate and less biased 
than humans. We show, however, that the widely used commercial risk assessment 
software COMPAS is no more accurate or fair than predictions made by people with 
little or no criminal justice expertise. In addition, despite COMPAS’s collection of 137 
features, the same accuracy can be achieved with a simple linear classifier with only 
two features.”

http://advances.sciencemag.org/content/4/1/eaao5580


Publicly available software
• University of Chicago’s Aequitas Toolkit
• https://dsapp.uchicago.edu/aequitas/

• Google’s What-If-Tool
• https://pair-code.github.io/what-if-tool/
• Commercial at: https://bit.ly/2xJYdqv

• IBM Research’s AI Fairness 360 Interactive Experience
• http://aif360.mybluemix.net/
• Code: https://github.com/ibm/aif360

https://dsapp.uchicago.edu/aequitas/
https://pair-code.github.io/what-if-tool/
https://bit.ly/2xJYdqv
http://aif360.mybluemix.net/
https://github.com/ibm/aif360


Solutions considered from the policy side
• Regulations

• The EU has General Data Protections Regulation (GDPR) data 
laws which went into effect on May 25, 2018

• These laws grant users a “right to explanation” of any 
automated decision-making as applied to them

• Wikipedia entry: http://bit.ly/1lmrNJz



From fairness to justice: just machine 
learning in an unjust world?
• Racist/sexist humans – e.g., biased judges

•Unjust algorithms are already in use – e.g., three-strikes 
laws, mandatory minimum sentencing

• They don’t take enough empirical data into account 

• Machine learning can help here, but what are the suitable 
task, performance measure, and experience



The Just Machine Learning Project
• How should we represent implicit vs. explicit bias?
• Is explicit bias represented as rules?
• Is implicit bias a set of examples from which to draw 

conclusions?
• Gabby Johnson (UCLA): “The Structure of Bias”. 

https://tinyurl.com/y7k2te92

https://tinyurl.com/y7k2te92


The Just Machine Learning Project
• How should we represent implicit vs. explicit bias?
• How should we capture intent in machine learning?
• The US anti-discrimination laws incentivize the framing of cases 

in terms of intent
• Josh Simons (Harvard): “The Politics of Machine Learning: 

Discrimination, Fairness, and Equality”.



The Just Machine Learning Project
• How should we represent implicit vs. explicit bias?
• How should we capture intent in machine learning?
• Are purely data-driven approaches ideal in all scenarios?
• Data are the results of cases meeting the laws/guidelines and 

subject matter experts.
• Laws can be thought of as constraints and policies as 

implementations of those constraints.
• Ideally, we’d like ML to change the biased policies and laws.



The Just Machine Learning Project
• What should the objective function be?

• Sometimes there are multiple objective functions that are at odds 
with each other – e.g., child protective services

• Do we care about harm or do we care about benefit?

• Do we care about treatment or do we care about impact?

• Can we create a procedure that helps formulate objective functions?



Moving away from 
assessing risk estimates



A different representation of 
the task
• Given a sequence of ordered instances, where should we place 

a new instance?

• Instance are not uniformly ordered Peter

worse better
Bob

Ed
Jim

Bill

Jack
Mark

?

Xindi Wang Onur Varol



Learning to Place

• A two-step approach: 
1. Learn pairwise preferences 

2. Generate a partial ordering from the pairwise preferences

Peter

worse better
Bob

Ed
Jim

Bill

Jack
Mark

?



Learning to Place
• A two-step approach: 

1. Learn pairwise preferences 

• Build a classifier by giving it a set of training pairs: !, # , $
• i and j are instances in the training set
• b is the binary response variable: 

• $ = 0 if ) ! < ) #
• $ = 1 if ) ! > ) #

• When a new instance arrives, the classifier is asked to predict b for each 
instance the train set -./!0 !01-/023, 034 !01-/023 , $

2. Generate a partial ordering from the pairwise preferences

Peter

worse better
Bob

Ed
Jim

Bill

Jack
Mark

?



Learning to Place
• A two-step approach: 

1. Learn pairwise preferences 
2. Generate a partial ordering from the pairwise preferences

• Rank the instances.  This can be based on
• Voting
• Hamilton path of a weighted tournament graph (WTG)

• Learning to order things [Cohen, Schapire, Singer, JAIR 1999]
• FAS-PIVOT [Ailon, Charikar, and Newman, STOC 2005]
• WTG-Wave [Wang, et al., CompleNet 2018]

• SpringRank [De Bacco, Larremore, and Moore, arXiv 2017]
• …

Peter

worse better
Bob

Ed
Jim

Bill

Jack
Mark

?



Why not regression?

• Property of interest (i.e., target variable) is heavy-tailed

• This leads to a big class imbalance problem 

• Methods, like linear regression, heavily under-predict the “big 
and rare” instances
• Possible solution: Median-of-means [Hsu & Sabato, JMLR 2016]
• Has free parameters that need to be tuned

• No human in the loop



Learning to Place
• Phase I: Build a classifier for pairwise preferences (based on a 

given training set)

• Phase II: Find places for new items
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What is fair?
• Normal test: the value(s) for the sensitive feature(s) is the same among 

the train and test sets

• Cross test: the value(s) of the sensitive feature(s) is not the same among 
the train and test sets

• Error = predicted value − actual value

• If error > 0, then overpredicting

• If error = 0, then fair

• If error < 0, then underpredicting
0

!""#$%&&

!""'%$()*

fair line



What does Learning to Place 
find on the COMPAS data?



COMPAS Data
• The data is from the ProPublica story "Machine Bias”,1 where they analyze the COMPAS 

Recidivism Algorithm.
• There is a main dataset, compas.db, containing several tables including:

• Case arrest: arrest records of criminals
• Charge: charge records of criminals
• Compas: COMPAS screening of criminals
• Jail history: jail history of criminals
• People: basic demographic data of criminals, together with some processed crime 

data2

• Prison history: prison history of criminals
• Summary: a summary table directly used for ProPublica analysis

1 https://github.com/propublica/compas-analysis
2 There is no source of data statement for the processed crime data.

https://github.com/propublica/compas-analysis


The Just Machine Learning Project
• Learning to place

• A two-step approach: pairwise preferences + ranking 
• Task on COMPAS recidivism data

• Order instances based on 
time interval (in days) 
between charges, 
or prison release and 
next charge

• Our data: Starting from 
compas.db, we curated 
crime history data for each 
individual 0
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Charge Date, Jail Time, Prison Time for One White Male
Felony Misdemeanor Jail Prison

Response Variable



The Just Machine Learning Project
• Learning to place

• A two-step approach: pairwise preferences + ranking 

• Response variable

• Time interval (in days) between charges

• Covariates

Gender & age at 
charge time

length of 
crime career 

prior 
felony count

prior 
jail count

prior 
prison count

average & gradient 
of previous intervals

prior case &
charge counts

prior misdemeanor 
count

prior 
jail length

prior 
prison length



Breakdown by charge type

Charge Type % Among Blacks % Among Whites

Felony 1 2.37 1.47

Felony 2 10.70 6.48

Felony 3 57.68 53.28

Misdemeanor 1 21.84 30.13
Misdemeanor 2 7.40 8.64

Is a black felony a white misdemeanor?



Age at the time of the charge

<16 [16, 20] [21, 25] [26, 30] > 30

Age*

103

104

102

101

Co
un

t

* We categorized age based on input from Jack McDevitt, a criminology professor at Northeastern University.







Prior prison length is different between 
blacks and whites



Learning to Place on COMPAS data
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Blacks, for whom 
the black model 
underpredicts but 
the white model 
overpredicts    

fair line

Blacks, for whom 
the black model 
overpredicts but 
the white model 
underpredicts

Whites, for whom 
the white model 
underpredicts but 
the black model 
overpredicts

fair line

Whites, for whom 
the white model 
overpredicts but 
the black model 
underpredicts

What is fair?



Favored vs. prejudiced rates

• Compute the kernel density estimation for !""#$%&& − !""(%$)*+
• Favored region: area under curve for !""#$%&& − !""(%$)*+ > 0
• Prejudiced region: area under curve for !""#$%&& − !""(%$)*+ < 0

log !""#$%&& − !""(%$)*+

white black

log !""#$%&& − !""(%$)*+

favoredprejudicedfavoredprejudiced



Experimental methodology

• 5×2 cross-validation 

• Five iterations of two fold cross-validation

• Generates low type 1 error

• Type 1 error: incorrectly detecting a difference when no difference exists

• Is slightly more powerful than 10-fold cross-validation

• Power = 1 – Type II error: ability to detect algorithm differences when they do exist

Thomas G. Dietterich. 1998. Approximate statistical tests for comparing supervised classification learning algorithms. 

Journal of Neural Computation 10, 7 (October 1998), 1895-1923. https://bit.ly/2Rce2RG

https://bit.ly/2Rce2RG


Favored vs. prejudiced by race
• Whites are favored; blacks are prejudiced against.
• Standard deviations on favoritism and prejudice are larger among blacks 

than among whites.

whiteblackwhiteblack



Favored vs. prejudiced by race & gender
• The gaps between white & black females are larger than among white & black males.
• Among whites, females are favored more and males are prejudiced against more.
• Standard deviations on favoritism and prejudice are larger among black females than 

on black males or whites of either sex.

whiteblack whiteblack



Favored vs. prejudiced by race & degree 
of charge
• Standard deviations on favoritism and prejudice are larger among black 

felonies than on white felonies or misdemeanors of either race .
• The favored rates for black and white felonies overlap.

whiteblack whiteblack



Favored vs. prejudiced by race & age
• The gaps between whites and blacks between 16 & 20 is larger than any other 

age range.
• Between 21 & 25, whites are the most favored and the least prejudiced against.
• Between 21 & 25, standard deviations on favoritism and prejudice are larger 

among blacks than any other age for blacks or any age for whites.
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So what should we do?

• Presented one way to quantify favoritism vs. prejudice
• We have many others
• Challenges: 
• Null models? 
• Connections to social and justice theories?



So what should we do?
• Presented one way to quantify in-group favoritism vs. out-group prejudice
• We have many others

• Challenges: Null models? Connections to social and justice theories?

• Perhaps we should employ a kind of affirmative action for machine 
learning algorithms when we observe favoritism for one group and 
prejudice for another

• Example: In the COMPAS data, use the model trained on 
white individuals to analyze the cases of black individuals 



Where do we go from here?

“Computers may be intelligent, but they are not wise.
Everything they know, we taught them, and we taught
them our biases. They are not going to un-learn them
without transparency and corrective action by humans.”
-- Ellora Thadaney Israni

https://www.nytimes.com/2017/10/26/opinion/algorithm-compas-sentencing-bias.html



Education
• Lots of college courses on data/digital + ethics

• A list is publicly available in a Google spreadsheet at 
https://tinyurl.com/yc74sdpe

https://tinyurl.com/yc74sdpe


• Thanks to Danielle Allen, Jack McDevitt, 
Branden Fitelson, and Ron Sandler.
• Thank you for listening.
• COMPAS data
• https://github.com/propublica/compas-analysis/

• Slides
• http://eliassi.org/tina_justML_2018.pdf

• Contact info
• tina@eliassi.org
• @tinaeliassi

• Consider joining the RADLAB
• 3 postdoc positions at the intersection of 

machine learning, data mining, and network science
• Details at http://eliassi.org/postdocs18.htm


