Discovering Roles and Anomalies in Graphs: Theory and Applications

Part 2: patterns, anomalies and applications
Tina Eliassi-Rad (Rutgers)
Christos Faloutsos (CMU)

OVERVIEW - high level:

Resource:

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining
System)

- www.cs.cmu.edu/~pegasus

- code and papers

Roadmap

- \cdot Patterns in graphs
- overview
- Static graphs
- Weighted graphs
- Time-evolving graphs
- Anomaly Detection
- Application: ebay fraud
- Conclusions

Graphs - why should we care?

Linked in.

Food Web [Martinez ' 91]

Internet Map [lumeta.com]

Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)

- web: hyper-text graph
- ... and more:

Graphs - why should we care?

- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal' ?
- which patterns/laws hold?

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal'?
- which patterns/laws hold?
- To spot anomalies (rarities), we have to discover patterns

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal'?
- which patterns/laws hold?
- To spot anomalies (rarities), we have to discover patterns
- Large datasets reveal patterns/anomalies that may be invisible otherwise...
T. Eliassi-Rad \& C. Faloutsos

Graph mining

- Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
- Diameter
- in- and out- degree distributions
- other (surprising) patterns
- So, let's look at the data

Real Graph Patterns

unweighted

P01. Power-law degree distribution [Faloutsos et. al. '99,

> Kleinberg et. al.`99, Chakrabarti et. al. `04, Newman`04]

P02. Triangle Power Law [Tsourakakis `08] P03. Eigenvalue Power Law [Siganos et. al. `03]
P04. Community structure [Flake et. al. ${ }^{\text {© } 02 \text {, Girvan and }}$
Newman `02] P05. Clique Power Laws [Du et. al. '09] P06. Densification Power Law [Leskovec et. al. \({ }^{\text {05 }}\)] P07. Small and shrinking diameter [Albert and Barabási `99, Leskovec et. al. ‘05, McGlohon et. al. ‘08]
P08. Gelling point [McGlohon et. al. `08] P09. Constant size \(2^{\text {nd }}\) and \(3^{\text {rd }}\) connected components [McGlohon et. al. `08]
P10. Principal Eigenvalue Power Law [Akoglu et. al. `08] P11. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et. al. `98, Crovella and Bestavros `99, McGlohon et .al. `08]

weighted

P12. Snapshot Power Law [McGlohon et. al. `08]

P13. Weight Power Law [McGlohon et. al. `08] P14. Skewed call duration distributions [Vaz de Melo et. al. `10]

Roadmap

- Patterns in graphs
- overview
- Static graphs
- Weighted graphs
- Time-evolving graphs
- Anomaly Detection
- Application: ebay fraud
- Conclusions

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S.2: Eigen Exponent E

Eigenvalue

> Exponent = slope

$$
E=-0.48
$$

May 2001

Rank of decreasing eigenvalue

- A2: power law in the eigenvalues of the adjacency matrix

Solution\# S.2: Eigen Exponent E

Eigenvalue

> Exponent = slope

$$
E=-0.48
$$

May 2001

Rank of decreasing eigenvalue

- [Mihail, Papadimitriou' 02]: slope is $1 / 2$ of rank exponent

But:

How about graphs from other domains?

More power laws:

- web hit counts [w/ A. Montgomery]

epinions.com

And numerous more

- \# of sexual contacts
- Income [Pareto] -' 80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- 'Black swans'

Roadmap

- Patterns in graphs
- overview
- Static graphs

- S1: Degree, S2: eigenvalues
- S3-4: Triangles, S5: cliques
- Radius plot
- Other observations ('eigenSpokes')
- Weighted graphs
- Time-evolving graphs

CarnegieMellon

Solution\# S.3: Triangle ‘Laws’

- Real social networks have a lot of triangles

Solution\# S.3: Triangle ‘Laws’

- Real social networks have a lot of triangles
- Friends of friends are friends
- Any patterns?

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

ASN

X-axis: \# of participating triangles
Y: count (\sim pdf)

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

ASN triangles
Y: count (\sim pdf)

CarnegieMellon

Triangle Law: \#S. 4 [Tsourakakis ICDM 2008]

SDM'12 Tutorial

X-axis: degree
Y-axis: mean \# triangles
n friends $->\sim n^{1.6}$ triangles

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)
Q : Can we do that quickly?

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)
Q : Can we do that quickly?
A: Yes!
\#triangles $=\mathbf{1 / 6 ~ S u m ~}\left(\lambda_{i}{ }^{3}\right)$
(and, because of skewness (S2), we only need the top few eigenvalues!

Triangle Law: Computations [Tsourakakis ICDM 2008]

Wikipedia graph 2006-Nov-04
≈ 3, IM nodes $\approx 37 \mathrm{M}$ edges

$1000 x+$ speed-up, $>90 \%$ accuracy

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Q: How to compute \# triangles in B-node graph? $\left(\mathrm{O}\left(\mathrm{d}_{\max } * * 2\right)\right.$)?

Triangle counting for large graphs?

Q: How to compute \# triangles in B-node graph? $\left(\mathrm{O}\left(\mathrm{d}_{\max } * * 2\right)\right)$? A: cubes of eigvals

Roadmap

- Patterns in graphs
- overview
- Static graphs

- S1: Degree, S2: eigenvalues
- S3-4: Triangles, S5: cliques
- Radius plot
- Other observations ('eigenSpokes')
- Weighted graphs
- Time-evolving graphs

CarnegieMellon

How about cliques?

Large Human Communication Networks Patterns and a Utility-Driven Generator

Nan Du, Christos Faloutsos, Bai Wang, Leman Akoglu KDD 2009

Cliques

- Clique is a complete subgraph.
- If a clique can not be contained by any larger clique, it is called the maximal clique.

Clique

- Clique is a complete subgraph.
- If a clique can not be contained by any larger clique, it is called the maximal clique.

Clique

- Clique is a complete subgraph.
- If a clique can not be contained by any larger clique, it is called the maximal clique.

Clique

- Clique is a complete subgraph.
- If a clique can not be contained by any larger clique, it is called the maximal clique.
- $\{0,1,2\},\{0,1,3\},\{1,2,3\}$

$\{2,3,4\},\{0,1,2,3\}$ are cliques;
- $\{0,1,2,3\}$ and $\{\mathbf{2}, \mathbf{3}, \mathbf{4}\}$ are the maximal cliques.

S5: Clique-Degree Power-Law

- Power law:

$$
C_{a v g}^{d_{i}} \propto d_{i}^{\alpha}
$$

\# maximal cliques of node i
degree
of node i

More friends, even more social circles!

S5: Clique-Degree Power-Law

- Outlier Detection

SDM' 12 Tutorial
T. Eliassi-Rad \& C. Faloutsos

S5: Clique-Degree Power-Law

- Outlier Detection

Roadmap

- Patterns in graphs
- overview
- Static graphs

- S1: Degree, S2: eigenvalues
- S3-4: Triangles, S5: cliques
- Radius plot
- Other observations ('eigenSpokes')
- Weighted graphs
- Time-evolving graphs

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs $\mathbf{O}(\mathbf{N} * * 2)$ space and up to $\mathrm{O}\left(\mathrm{N}^{* *} 3\right)$ time - prohibitive ($\mathrm{N} \sim 1 \mathrm{~B}$)
- Our HADI: linear on E (~10B)
- Near-linear scalability wrt \# machines
- Several optimizations -> 5x faster

YahooWeb graph (120Gb, 1.4B hodes, 6.6 B edges)

- Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
-7 degrees of separation (!)
-Diameter: shrunk

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Q: Shape?

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

Radius Plot of GCC of YahooWeb.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Conjecture:
EN
§ ${ }^{\circ}$

$\sum \sum B R$

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .
T. Eliassi-Rad \& C. Faloutsos

Conjecture:

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Roadmap

- Patterns in graphs
- overview
- Static graphs

- S1: Degree, S2: eigenvalues
- S3-4: Triangles, S5: cliques
- Radius plot
- Other observations ('eigenSpokes')
- Weighted graphs
- Time-evolving graphs

S6: EigenSpokes

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos Faloutsos: EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

$$
A=U \Sigma U^{T}
$$

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- EE plot:
$2^{\text {nd }}$ Principal component
- Scatter plot of scores of u1 vs u2
- One would expect
- Many points @ origin
- A few scattered ~randomly

u1
$1^{\text {st }}$ Principal component

EigenSpokes

- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
- Many points @ origin

EigenSpokes - pervasiveness

- Present in mobile social graph
- across time and space
- Patent citation graph

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

So what?

- Extract nodes with high scores
- high connectivity
- Good "communities"
spy plot of top 20 nodes

74

Bipartite Communities!

patents from
same inventor(s)
`cut-and-paste'
bibliography!
magnified bipartite community

Roadmap

- Patterns in graphs
- overview
- Static graphs
- Weighted graphs
- Time-evolving graphs
- Anomaly Detection
- Application: ebay fraud
- Conclusions

Observations on weighted graphs?

- A: yes - even more 'laws'!

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

Observation W.1: Fortification

More donors, more \$?

Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw': $1.01<\mathrm{iw}<1.26$

More donors, even more \$

SDM'12 Tutorial

In-weights

Orgs-Candidates

Roadmap

- Patterns in graphs
- overview
- Static graphs
- Weighted graphs
- Time-evolving graphs
- Anomaly Detection
- Application: ebay fraud
- Conclusions

Problem: Time evolution

- with Jure Leskovec (CMU -> Stanford)

- and Jon Kleinberg (Cornell sabb. @ CMU)

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter ~ $\mathrm{O}(\log \mathrm{N})$
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$

- What is happening in real data?

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter $\sim($ ($\mathrm{L} \alpha \mathrm{I})$
- diameter $\sim \mathrm{O}($ rug $\log \mathrm{N})$

- What is happening in real data?
- Diameter shrinks over time

T. 1 Diameter - "Patents"

- Patent citation network
- 25 years of data
-@1999
- 2.9 M nodes
- 16.5 M edges

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

- Q: what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=? 2 * \mathrm{E}(\mathrm{t})
$$

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that
$\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})$
- Q: what is your guess for
$\mathrm{E}(\mathrm{t}+1)=2)^{*} \mathrm{E}(\mathrm{t})$
- A: over-doubled!
- But obeying the "'Densification Power Law'’

T. 2 Densification - Patent Citations

- Citations among patents granted
- @1999
- 2.9 M nodes
- 16.5 M edges
- Each year is a datapoint

Roadmap

- Patterns in graphs
-...
- Time-evolving graphs
- T1: shrinking diameter;
- T2: densification
- T3: connected components
- T4: popularity over time
- T5: phonecall patterns

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos

Weighted Graphs and Disconnected
Components: Patterns and a Generator. SIG-KDD 2008

Observation T.3: NLCC behavior

Q : How do NLCC's emerge and join with the GCC?
(' ${ }^{\prime}$ NLCC' ${ }^{\prime}=$ non-largest conn. components)

- Do they continue to grow in size?
- or do they shrink?
- or stabilize?

Observation T.3: NLCC behavior

Q: How do NLCC's emerge and join with the GCC?
(" ${ }^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}=$ non-largest conn. components)

- Do they continue to grow in size?
- or do they shrink?
- or stabilize?

Observation T.3: NLCC behavior

Q: How do NLCC's emerge and join with the GCC?
(" ${ }^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}=$ non-largest conn. components)
YES - Do they continue to grow in size?
YES - or do they shrink?
YES - or stabilize?

Observation T.3: NLCC behavior

- After the gelling point, the GCC takes off, but NLCC' s remain \sim constant (actually, oscillate).

Time-stamp
T. Eliassi-Rad \& C. Faloutsos

(Computation - scalability?)

- Q: How to handle billion node graphs?
- A: hadoop + 'Pegasus'
- Most operations -> matrix-vector multiplications

Generalized Iterated Matrix Vector Multiplication (GIMV)

PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations.
U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. (ICDM) 2009, Miami, Florida, USA. Best Application Paper (runner-up).

Geditails Generalized Iterated Matrix Vector Multiplication (GIMV)

- PageRank
- proximity (RWR)
- Diameter
- Connected components
- (eigenvectors,
- Belief Prop.
- ...)

Example: GIM-V At Work

- Connected Components - 4 observations:

Size

Example: GIM-V At Work

- Connected Components

GIM-V At Work

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point

Roadmap

- Patterns in graphs
-...
- Time-evolving graphs
- T1: shrinking diameter;
- T2: densification
- T3: connected components
- T4: popularity over time
- T5: phonecall patterns

Timing for Blogs

- with Mary McGlohon (CMU->Google)
- Jure Leskovec (CMU->Stanford)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR) [SDM' 07]

T. 4 : popularity over time

\# in links

Post popularity drops-off - exponentially?

T. 4 : popularity over time

\# in links
(log)

days after post (log)

Post popularity drops-off - expon e^{\dagger} ally? POWER LAW!
Exponent?

T. 4 : popularity over time

\# in links
(log)

days after post (log)

Post popularity drops-off - expor ent ally? POWER LAW!
Exponent? - 1.6

- close to -1.5 : Barabasi's stack model
- and like the zero-crossings of a random walk

-1.5 slope

J. G. Oliveira \& A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. Nature 437, 1251 (2005) . [PDF]

Log \# days to respond

Roadmap

- Patterns in graphs
-...
- Time-evolving graphs
- T1: shrinking diameter;
- T2: densification
- T3: connected components
- T4: popularity over time
- T5: phonecall patterns

T.5: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

Pedro O. S. Vaz de Melo, Leman
Akoglu, Christos Faloutsos, Antonio A. F. Loureiro PKDD 2010

Probably, power law (?)

No Power Law!

'TLaC: Lazy Contractor'

- The longer a task (phonecall) has taken,
- The even longer it will take

Data Description

- Data from a private mobile operator of a large city
- 4 months of data
- 3.1 million users
- more than 1 billion phone records
- Over 96% of 'talkative' users obeyed a TLAC distribution ('talkative': >30 calls)

Outliers:

Real Graph Patterns

unweighted

\checkmark P01. Power-law degree distribution [Faloutsos et. al. '99, Kleinberg et. al. `99, Chakrabarti et. al. `04, Newman`04] P02. Triangle Power Law [Tsourakakis `08]
P03. Eigenvalue Power Law [Siganos et. al. `03] P04. Community structure [Flake et. al. \({ }^{\text {0 }}\) 2, Girvan and Newman `02]
P05. Clique Power Laws [Du et. al. '09]

P06. Densification Power Law [Leskovec et. al. $\left.{ }^{\text {0 }} 05\right]$
P07. Small and shrinking diameter [Albert and Barabási
`99, Leskovec et. al. ‘05, McGlohon et. al. ‘08] P08. Gelling point [McGlohon et. al. `08]
P09. Constant size $2^{\text {nd }}$ and $3^{\text {rd }}$ connected components
[McGlohon et. al. `08] P10. Principal Eigenvalue Power Law [Akoglu et. al. `08]
P11. Bursty/self-similar edge/weight additions [Gomez and
Santonja `98, Gribble et. al. `98, Crovella and Bestavros `99, McGlohon et .al. `08]

weighted

P12. Snapshot Power Law [McGlohon et. al. `08]

P13. Weight Power Law [McGlohon et. al. `08] P14. Skewed call duration distributions [Vaz de Melo et. al. `10]

RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. ECML PKDD'09.

Roadmap

- Patterns in graphs
- overview
- Static graphs
- Weighted graphs
- Time-evolving graphs
\Rightarrow - Anomaly Detection
- Application: ebay fraud
- Conclusions

OddBall: Spotting Anomalies in Weighted Graphs

Leman Akoglu, Mary McGlohon, Christos
Faloutsos

Carnegie Mellon University
School of Computer Science

PAKDD 2010, Hyderabad, India

Main idea

For each node,

- extract 'ego-net' (=1-step-away neighbors)
- Extract features (\#edges, total weight, etc etc)
- Compare with the rest of the population

Selected Features

- N_{i} : number of neighbors (degree) of ego i
- E_{i} : number of edges in egonet i
- W_{i} : total weight of egonet i
- $\lambda_{w, i}$: principal eigenvalue of the weighted adjacency matrix of egonet I

Near-Clique/Star

Near-Clique/Star

Near-Clique/Star

Near-Clique/Star

Dominant Heavy Link

Roadmap

- Patterns in graphs
- overview
- Static graphs
- Weighted graphs
- Time-evolving graphs
- Anomaly Detection
- Application: ebay fraud
- Conclusions

NetProbe: The Problem

Find bad sellers (fraudsters) on eBay who don' t deliver their (expensive) items

E-bay Fraud detection

w/ Polo Chau \& Shashank Pandit, CMU [www' 07]

E-bay Fraud detection

E-bay Fraud detection

E-bay Fraud detection - NetProbe

NetProbe: Key Ideas

- Fraudsters fabricate their reputation by "trading" with their accomplices
- Transactions form near bipartite cores
- How to detect them?

NetProbe: Key Ideas

Use 'Belief Propagation’ and ~heterophily

Darker means more likely

CarnegieMellon

NetProbe: Main Results

Roadmap

- Patterns in graphs
- Anomaly Detection

- Application: ebay fraud
- How-to: Belief Propagation
- Conclusions

Guilt-by-Association Techniques details ${ }^{\text {su }}$

Given:

- graph and
- few labeled nodes

Find: class (red/green) for rest nodes
Assuming: network effects (homophily/ heterophily, etc)

F
A
H
T. Eliassi-Rad \& C. Faloutsos

Correspondence of Methods

Random Walk with Restarts (RWR) Google Semi-supervised Learning (SSL) Belief Propagation (BP)

Bayesian

Correspondence of Methods

Random Walk with Restarts (RWR) \approx Semi-supervised Learning (SSL) \approx Belief Propagation (BP)

$\begin{array}{\|c\|} \hline \text { Method } \\ \hline \text { RWR } \end{array}$	Mat			nown		known
	[I - c	$\left.\mathbf{A D}^{-1}\right]$		x		(1-c) \mathbf{y}
SSL	$[\mathbf{I}+\mathrm{a}(\mathbf{D}$	- A)]		\mathbf{x}		y
FABP	$[\mathbf{I}+a \mathbf{D}$	c' A]		b_{h}		$\phi_{\text {h }}$
$\checkmark \gg \begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}$				$?$		[$\begin{aligned} & 0 \\ & 1 \\ & 1\end{aligned}$

Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms. Danai Koutra, et al PKDD'11

Roadmap

- Patterns in graphs
- Anomaly Detection

- Application: ebay fraud
E. Conclusions

Overall conclusions

- Roles:
- Past work in social networks ('regular', 'structural' etc)
- Scalable algo's to find such roles
- Anomalies \& patterns
- Static (power-laws, ‘six degrees’)
- Weighted (super-linearity)
- Time-evolving (densification, -1.5 exponent)

OVERALL CONCLUSIONS -

 high level:

OVERALL CONCLUSIONS high level

- BIG DATA: -> roles/patterns/outliers that are invisible otherwise

References

- Leman Akoglu, Christos Faloutsos: RTG: A Recursive Realistic Graph Generator Using Random Typing. ECML/PKDD (1) 2009: 13-28
- Deepayan Chakrabarti, Christos Faloutsos: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1): (2006)

References

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4): (2008)
- Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden, Carlos Guestrin, Michalis Faloutsos: Information Survival Threshold in Sensor and P2P Networks. INFOCOM 2007: 1316-1324

References

- Christos Faloutsos, Tamara G. Kolda, Jimeng Sun: Mining large graphs and streams using matrix and tensor tools. Tutorial, SIGMOD Conference 2007: 1174

References

- T. G. Kolda and J. Sun. Scalable Tensor Decompositions for Multi-aspect Data Mining. In: ICDM 2008, pp. 363-372, December 2008.

References

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. PKDD 2005: 133-145

References

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, GraphScope: Parameterfree Mining of Large Time-evolving Graphs ACM SIGKDD Conference, San Jose, CA, August 2007

References

- Jimeng Sun, Dacheng Tao, Christos Faloutsos: Beyond streams and graphs: dynamic tensor analysis. KDD 2006: 374-383

References

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, Fast Random Walk with Restart and Its Applications, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos, Center-Piece Subgraphs: Problem Definition and Fast Solutions, KDD 2006, Philadelphia, PA

References

- Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746

Project info

www.cs.cmu.edu/~pegasus

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; ADAMS-DARPA; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

