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What are roles? 
•  “Functions” of nodes in the network 

– Similar to functional roles of species in 
ecosystems 

•  Measured by structural behaviors 
•  Examples 

–  centers of stars 

– members of cliques 
–  peripheral nodes 
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Example of Roles 
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Why are roles important? 
Task Use Case 
Role query Identify individuals with similar 

behavior to a known target 

Role outliers Identify individuals with unusual 
behavior 

Role dynamics Identify unusual changes in 
behavior 

Identity resolution Identify known individuals in a 
new network 

Role transfer Use knowledge of one network to 
make predictions in another 

Network 
comparison 

Determine network compatibility 
for knowledge transfer 

Role Discovery 

ü Automated discovery 

ü Behavioral roles 

ü Roles generalize 
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Roles and Communities 
•  Roles group nodes with similar structural 

properties 
•  Communities group nodes that are well-

connected to each other 
•  Roles and communities are complementary 
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Roles and Communities 
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RolX * Fast Modularity† 

* Henderson, et al. 2012; † Clauset, et al. 2004  



Roles and Communities 

•  Roles 
– Faculty 

– Staff 
– Students 

– … 
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•  Communities 
– AI lab 

– Database lab 
– Architecture lab 

– … 

Consider the social network of a CS dept 
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Equivalences 
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Deterministic Equivalences 
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Structural Equivalence 
•  [Lorrain & White, 1971] 
•  Two nodes u and v are structurally  

equivalent if they have the same  
relationships to all other nodes 

•  Hypothesis: Structurally equivalent  
nodes are likely to be similar in other  
ways – i.e., you are your friend 

•  Weights & timing issues are not considered 
•  Rarely appears in real-world networks 
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Structural Equivalence: Algorithms 
•  CONCOR (CONvergence of iterated CORrelations)  

[Breiger et al. 1975]  
•  A hierarchical divisive approach 

1.  Starting with the adjacency matrix, repeatedly calculate Pearson 
correlations between rows until the resultant correlation matrix 
consists of +1 and -1 entries 

2.  Split the last correlation matrix into two structurally equivalent  
submatrices (a.k.a. blocks): one with +1 entries, another with -1 
entries 

•  Successive split can be applied to submatrices in order  
to produce a hierarchy (where every node has a unique position) 
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Structural Equivalence: Algorithms 
•  STRUCUTRE [Burt 1976]  
•  A hierarchical agglomerative approach 

1.  For each node i, create its ID vector by concatenating its row and 
column vectors from the adjacency matrix 

2.  For every pair of nodes 〈i, j〉, measure the square root of sum of 
squared differences between the corresponding entries in their ID 
vectors 

3.  Merge entries in hierarchical fashion as long as their difference is 
less than some threshold α 
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Structural Equivalences: Algorithms 
•  Combinatorial optimization approaches 

–  Numerical optimization with tabu search [UCINET] 

–  Local optimization [Pajek] 

•  Partition the sociomatrices into blocks based on a cost 
function that minimizes the sum of within block variances 

–  Basically, minimize the sum of code cost within each 
block 
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Cross-Associations (XA)  
•  [Chakrabarti+, KDD 2004] 

•  Minimize total encoding cost of the adjacency matrix  
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Deterministic Equivalences 
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Automorphic Equivalence 
•  [Borgatti, et al. 1992; Sparrow 1993] 
•  Two nodes u and v are automorphically equivalent if all 

the nodes can be relabeled to form an isomorphic graph 
with the labels of u and v interchanged 
–  Swapping u and v (possibly 

along with their neighbors)  
does not change graph distances 

•  Two nodes that are  
automorphically equivalent  
share exactly the same  
label-independent properties 
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Automorphic Equivalence: Algorithms 
•  Sparrow (1993) proposed an algorithm that scales linearly to the 

number of edges 

•  Use numerical signatures on degree sequences of neighborhoods 

•  Numerical signatures use a unique transcendental number like π, 
which is independent of any permutation of nodes 

•  Suppose node i has the following degree sequence: 1, 1, 5, 6, and 9.  
Then its signature is Si,1 = (1 + π)(1 + π) (5 + π) (6 + π) (9 + π)  

•  The signature for node i at k+1 hops is Si,(k+1) = Π(Si,k  + π) 

•  To find automorphic equivalence, simply compare numerical 
signatures of nodes 
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Deterministic Equivalences 
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Regular Equivalence 
•  [Everett & Borgatti, 1992] 
•  Two nodes u and v are regularly equivalent if they 

are equally related to equivalent others 
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+
Regular Equivalenceg q

� Introduced by Borgatti (1996)

� Definition:
� Two actors are regularly equivalent if they are equally related to 

i l t thequivalent others

President Motes

Faculty

Graduate Students

Hanneman, Robert A. and Mark Riddle.  2005.  Introduction to social network methods.  Riverside, CA:  University of 
California, Riverside ( published in digital form at http://faculty.ucr.edu/~hanneman/ )



Regular Equivalence  
(continued) 

•  Basic roles of nodes 
–  source 

–  repeater 
–  sink  

–  isolate 
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Regular Equivalence  
(continued) 

•  Based solely on the social roles of neighbors  

•  Interested in  
–  Which nodes fall in which social roles? 

–  How do social roles relate to each other? 

•  Hard partitioning of the graph into social roles 

•  A given graph can have more than one valid regular 
equivalence set 

•  Exact regular equivalences can be rare in large graphs 
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Regular Equivalence: Algorithms 
•  Many algorithms exist here 
•  Basic notion 

– Profile each node’s neighborhood by the 
presence of nodes of other "types"  

– Nodes are regularly equivalent to the extent that 
they have similar "types" of other nodes at 
similar distances in their neighborhoods 
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Equivalences 
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Stochastic Equivalence 
•  [Holland, et al. 1983;  

Wasserman & Anderson, 1987] 

•  Two nodes are stochastically  
equivalent if they are  
“exchangeable” w.r.t. a  
probability distribution 

•  Similar to structural  
equivalence but  
probabilistic 
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p(a,v) 

p(u,b) p(v,b) 

p(a,u) 

p(a,u) = p(a,v) 
p(u,b)= p(v,b) 



Stochastic Equivalence: Algorithms 
•  Many algorithms exist here 
•  Most recent approaches are generative  

[Airoldi, et al 2008] 
•  Some choice points 

–  Single [Kemp, et al 2006] vs. mixed-membership 
[Koutsourelakis & Eliassi-Rad, 2008] equivalences 
(a.k.a. “positions”) 

–  Parametric vs. non-parametric models 
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Roadmap 
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RolX: Role eXtraction 
•  Introduced by Henderson, et al. 2011b 
•  Automatically extracts the underlying roles 

in a network 
– No prior knowledge required 

•  Assigns a mixed-membership of roles to 
each node 

•  Scales linearly on the number of edges 
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RolX: Flowchart 
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RolX: Flowchart 
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mean clustering 
coefficient of 
neighbors, etc 



Recursive Feature Extraction 
•  ReFeX [Henderson, et al. 2011a] turns network connectivity into 

recursive structural features 

•  Neighborhood features: What is your connectivity pattern? 
•  Recursive Features: To what kinds of nodes are you connected? 
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ReFeX 

Local Egonet Recursive 

Neighborhood 

Regional 

1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#

N
od

es
 



Propositionalisation (PROP) 
•  [Knobbe, et al. 2001; Neville, et al. 2003; Krogel, et al. 

2003] 

•  From multi-relational data mining with roots in Inductive 
Logic Programming (ILP) 

•  Summarizes a multi-relational dataset (stored in multiple 
tables) into a propositional dataset (stored in a single 
“target” table)  

•  Derived attribute-value features describe properties of 
individuals 

•  Related more to recursive structural features than structural 
roles 
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Role Extraction 
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Features 
1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#

N
od

es
 Recursively 

extract 
features 

Automatically 
factorize roles 



Automatically Discovered Roles 
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Network Science  
Co-authorship Graph 

[Newman 2006] 
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Making Sense of Roles 
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Mixed-Membership over Roles 
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Bright blue nodes are 
peripheral nodes 

Bright red nodes are 
locally central nodes 

Amazon Political Books Co-purchasing Network 
[V. Krebs 2000] 

conservative 
liberal 

neutral 



 Role Query 
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Node Similarity for M.E.J. Newman 
(bridge) 

Node Similarity for F. Robert (cliquey) 

Node Similarity for J. Rinzel (isolate) 



 
Roles Generalize across  
Disjoint Networks 
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Figure 4: RolX provides better generalization per-

formance between enterprise IP networks A and

B (mean accuracy of RolX =85%, Feat=71%, p-

value=0.01).
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Figure 5: RolX chooses a high accuracy model size

of 9 roles, in the middle of the peak accuracy range

of 7-11 roles. The Y-axis depicts the mean classifi-

cation accuracy using RolX (over all 4 test sets) by

model size.

is right in the middle of the peak accuracy range shown in
Figure 5. Figure 6a shows that the model selection crite-
rion used by RolX is highly correlated with classification
accuracy (Pearson correlation is -0.91). Figure 6b shows the
default RolX model selection criterion decomposed into its
constituent parts. Model cost is the cost associated with
representing the model itself while error cost is the cost of
representing the di↵erences between the original feature val-
ues and the estimated feature values reconstructed using the
model. As expected, we see a consistent increase in model
cost and a consistent decrease in error cost as the number
of roles increases.

Figure 7 shows that IP tra�c classes are well-separated
in the RolX “role space”, with as few as 3 roles (extracted
from the original 373 structural features). Note that we
achieve even better separation with the automatically se-
lected model size of 9 roles (see Figure 4), but we can only
clearly visualize up to 3.

We omit for brevity the “sensemaking” table for the 3-role
IP experiment. It shows that Roles 1 and 2 are lower-volume
IPs while Role 3 is high-volume servers or P2P nodes. Role
3 contains nodes of all three types (Web, DNS, P2P). This
Role is overloaded since the model size of 3 is not as predic-
tive as larger model sizes (see Figure 5).

Reality Mining Device data: Using the Reality Mining
Device dataset, we conducted two sets of transfer learning
experiments. The first set of experiments involves a binary
classification task where we try to predict whether a given
subject is a business school student or not. The second
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Figure 6: RolX ’s model selection is e↵ective: (a)

Classification accuracy is highest when RolX selec-

tion criterion is minimized. Red markers indicate

the peak performing model sizes of 7-11 roles (b)

RolX ’s model selection criterion balances model size

and reconstruction accuracy.

set is similar, where we try to predict whether a subject
is a graduate student in the Media Lab or not. As train
and test sets, we used each pair of consecutive months in
our dataset. In Figure 8, we show the accuracy of RolX .
The Baseline is a classifier that learns to always predict the
majority class of the training set on the test set. The time
labels denote the month for the train data, and the month
following that is used as the test data. We also use all the
data in 2004 and 2005 as train and test data, respectively.
Notice that RolX outperforms the baseline classifier most of
the time with an average of 83% and 76% accuracy for the
two experiment sets, respectively. We notice that RolX ’s
accuracy drops when September and May data is used as
training, possibly because these months correspond to the
start and end of the school semesters; the behavior of the
subjects would be generally di↵erent than usual in these
months, thus providing not as much predictive information
as the other months would.

4. STRUCTURAL SIMILARITY
Here we describe experiments in which RolX is used for

its most basic task: grouping nodes based on their structural
similarity.

4.1 Network Sciences Coauthorship data:
Our first data set is the weighted Network Science Co-

authorship Graph with 1589 authors (from the network sci-
ence community) and 2743 weighted edges [25]. Figure 9
shows (a) the role-colored graph (where each node is col-
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Wed 
Network 

Tue 
Network 

Feature 
Discovery 

Feature 
Extraction 

Feature 
Extraction 

Inference Learning 

Regression Regression 

Inference 

RolX 

C3 C2 

V1 

G1 G2 

V2 V3 

G3 

C1 

L 

F 

M 

V: (node × feature) matrix  

G: (node × role) matrix  

F: (role × feature) matrix  

L: List of feature names 

C: Class labels 

M: model 

E.g., degree, 
avg wgt, etc 

Discovery Stage Application Stage 



Roles: Regular Equivalence vs. RolX 
RolX Regular Equivalence 

Mixed-membership over roles ✓ 
Fully automatic ✓ 

Uses structural features ✓ 
Uses structure ✓ ✓ 

Generalizable across disjoint 
networks 

✓ 
 

? 
 

Scalable  
(linear on # of edges) ✓ 
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Roadmap 
•  What are roles 
•  Roles and communities 
•  Roles and equivalences (from sociology) 
•  Roles (from data mining) 
•  Summary 
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Summary 
•  Roles  

–  Structural behavior (“function”) of nodes 

–  Complementary to communities 

–  Previous work mostly in sociology under equivalences 

–  Recent graph mining work produces mixed-
membership roles, is fully automatic and scalable 

–  Can be used for many tasks: transfer learning, re-
identification, node dynamics, etc 
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