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Abstract
Given a large graph, like a computer network, whichk

nodes should we immunize (or monitor, or remove), to make
it as robust as possible against a computer virus attack? We
need (a) a measure of the ‘Vulnerability’ of a given network,
(b) a measure of the ‘Shield-value’ of a specific set ofk
nodes and (c) a fast algorithm to choose the best suchk
nodes.

We answer all these three questions: we give the justi-
fication behind our choices, we show that they agree with
intuition as well as recent results in immunology. More-
over, we proposeNetShield, a fast and scalable algorithm.
Finally, we give experiments on large real graphs, where
NetShieldachieves tremendous speed savings exceeding 7
orders of magnitude, against straightforward competitors.

1 Introduction
Given a graph, we want to quickly find thek best nodes

to immunize (or, equivalently, remove), to make the remain-
ing nodes to be most robust to the virus attack. This is the
core problem for many applications: In a computer network
intrusion setting, we want thek best nodes to defend (e.g.,
through expensive and extensive vigilance), to minimize the
spread of malware. Similarly, in a law-enforcement setting,
given a network of criminals, we want to neutralize those
nodes that will maximally scatter the graph.

The problem boils down to three questions, which we
address here:
Q1. Vulnerability measure:How to capture the ‘Vulnera-

bility’ of the graph, in a single number? That is, how
likely/easily that a graph will be infected by a virus.

Q2. ‘Shield-value’: How to quantify the ‘Shield-value’ of
a givensetof nodes in the graph, i.e., how important
are they in terms of maintaining the ‘Vulnerability’ of
the graph? Alternatively, how much less vulnerable
will be the graph to the virus attack, if those nodes are
immunized/removed?

Q3. Algorithm: How to quickly determine thek nodes that
collectivelyexhibit the highest ‘Shield-value’ score on
large, disk-resident graphs?

We start by adopting the first1 eigenvalueλ of the graph
as the ‘Vulnerability’ measurement (for Q1). Based on that,
we propose a novel definition of the ‘Shield-value’ score
Sv(S) for a specific set of nodes (for Q2). Finally, we pro-
pose aneffectiveandscalablealgorithm (NetShield) to find
a set of nodes with highest ‘Shield-value’ score (for Q3).
We conduct extensive experiments on several real data sets,
illustrating the effectiveness and efficiency of the proposed
methods.

The rest of the paper is organized as follows: Section 2
gives the problem definitions. We present the ‘Vulnerabil-
ity’ measurement in Section 3. The proposed ‘Shield-value’
score is presented in Section 4. We address the computa-
tional issues in Section 5. We evaluate the proposed meth-
ods in Section 6. Section 7 gives the related work, and Sec-
tion 8 gives the conclusions.

2 Problem Definitions
Table 1 lists the main symbols we use throughout the

paper. In this paper, we focus on un-directed un-weighted
graphs. We represent the graph by its adjacency matrix.
Following standard notations, we use capital bold letters
for matrices (e.g.,A), lower-case bold letters for vectors
(e.g.,a), and calligraphic fonts for sets (e.g.,S). We denote
the transpose with a prime (i.e.,A

′ is the transpose ofA),
and we use parenthesized superscripts to denote the corre-
sponding variable after deleting the nodes indexed by the
superscripts. For example,λ is the first eigen-value ofA,
thenλi is the first eigen-value ofA after deleting itsi(th)

row/column. We use(λi,ui) to denote theith eigen-pair
(sorted by the magnitude of the eigenvalue) ofA. When the
subscript is omitted, we refer to them as the first eigenvalue
and eigenvector respectively (i.e.,λ , λ1 andu , u1).

1In this paper, the first eigenvalue means the eigenvalue withthe largest
module.



Table 1. Symbols
Symbol Definition and Description

A,B, . . . matrices (bold upper case)
A(i, j) the element at theith row andjth

column of matrixA
A(i, :) theith row of matrixA

A(:, j) thejth column of matrixA
A

′ transpose of matrixA
a,b, . . . column vectors
S ,T , . . . sets (calligraphic)
n number of nodes in the graph
m number of edges in the graph
(λi,ui) theith eigen-pair ofA
λ first eigen-value ofA (i.e.,λ , λ1)
u first eigen-vector ofA (i.e.,u , u1)
λ(i), λ(S) first eigen-value ofA by deleting

nodei (or the set of nodes inS)
∆λ(i) eigen-drop:∆λ(i) = λ − λ(i)

∆λ(S) eigen-drop:∆λ(S) = λ − λ(S)

Sv(i) ‘Shield-value’ score of nodei
Sv(S) ‘Shield-value’ score of nodes inS
V(G) ‘Vulnerability’ score of the graph

With the above notations, our problems can be formally
defined as follows:

Problem 1 Measuring ‘Vulnerability’

Given: A large un-directed un-weighted connected graph
G with adjacency matrixA;

Find: A single number V(G), reflecting the ‘Vulnerability’
of the whole graph.

Problem 2 Measuring ‘Shield-value’

Given: A subsetS with k nodes in a large un-directed un-
weighted connected graphA;

Find: A single number Sv(S), reflecting the ‘Shield-value’
of thesek nodes (that is, the benefit of their re-
moval/immunization to the vulnerability of the graph).

Problem 3 Findingk Nodes of Best ‘Shield-value’

Given: A large un-directed un-weighted connected graph
A with n nodes and an integerk;

Find: A subsetS ofk nodes with the highest ‘Shield-value’
score among all

(

n

k

)

possible subsets.

In the next three sections, we present the corresponding
solutions respectively.

3 Our Solution for Problem 1

Here, we focus on Problem 1. We suggest using the first
eigenvalueλ as the solution.

3.1 ‘Vulnerability’ Score
In Problem 1, the goal is to measure the ‘Vulnerability’

of the whole graph by a single number. We adopt the first
eigenvalue of the adjacency matrixA as such a measure-
ment (eq. (1)): the largerλ is, the more vulnerable the whole
graph is.

V(G) , λ (1)

3.2 Justifications
The first eigenvalueλ is a good measurement of the

graph ‘Vulnerability’, because of recent results onepi-
demic thresholdsfrom immunology [2]: λ is closely
related to the epidemic thresholdτ of a graph under
a flu-like SIS (susceptible-infective-susceptible) epidemic
model, and specificallyτ = 1/λ. This means that a virus
less infective thanτ will quickly get extinguished instead
of lingering forever. Therefore, given the strength of the
virus (that is, the infection rate and the host-recovery rate),
an epidemic is more likely for a graph with largerλ.

We can also show that the first eigenvalueλ is closely
related to the so-calledloop capacityand thepath capacity
of the graph, that is, the number of loops and paths of length
l (l = 2, 3, . . .). If a graph has many such loops and paths,
then it is well connected, and thus more vulnerable (i.e., itis
easier for a virus to propagate across the graph = the graph
is less robust to the virus attack).

4 Our Solution for Problem 2
In Problem 2, the goal is to quantify the importance of

a given set of nodesS, and specifically the impact of their
deletion/immunization to the ‘Vulnerability’ of the rest of
the graph. The obvious choice is the drop in eigenvalue, or
eigen-drop∆λ that their removal will cause to the graph.
We propose to approximate it, to obtain efficient computa-
tions, as we describe later. Specifically, we propose using
Sv(S) defined as:

Sv(S) =
∑

i∈S

2λu(i)2 −
∑

i,j∈S

A(i, j)u(i)u(j) (2)

Intuitively, by eq. (2), a set of nodesS has higher ‘Shield-
value’ score if (1) each of them has a high eigen-score
(u(i)), and (2) they are dissimilar with each other (small
or zeroA(i, j)).

5 Our Solution for Problem 3
In this section, we deal with Problem 3. Here, the goal

is to find a subset ofk nodes with the highest ‘Shield-value’
score (among all

(

n
k

)

possible subsets).

5.1 Preliminaries
There are two obviously straight-forward methods for

Problem 3. The first one (referred to as ‘Com-Eigs’2) works

2To our best knowledge, this is the best known method to get theopti-
mal solution of Problem 3.



as follows: for each possible subsetS, we delete the corre-
sponding rows/columns from the adjacency matrixA; com-
pute the first eigenvalue of the new perturbed adjacency ma-
trix; and finally output the subset of nodes which has the
smallest eigenvalue (therefore has the largest eigen-drop).
Despite the simplicity of this strategy, it is computational
intractable due to its combinatorial nature. It is easy to
show that the computational complexity of ‘Com-Eigs’ is
O(

(

n

k

)

· m)3. This is computationally intractable even for
small graphs. For example, in a graph with 1K nodes and
10K edges, suppose that it takes about 0.01 second to find
its first eigen-value. Then we need about 2,615 years to find
the best-5 nodes with the highest ‘Shield-value’ score!

A more reasonable (in terms of speed) way to find the
best-k nodes is to evaluate Sv(S), rather than to compute
the first eigen-valueλS ,

(

n

k

)

times, and pick the subset with
the highest Sv(S). We refer to this strategy as ‘Com-Eval’.
Compared with the straight-forward method (referred to as
‘Com-Eigs’, which isO(

(

n

k

)

· m)); ‘Com-Eval’ is much
faster (O(

(

n

k

)

· k2)). However, ‘Com-Eval’ is still not ap-
plicable to real applications due to its combinatorial nature.
Again, in a graph with 1K nodes and 10K edges, suppose
that it only takes about 0.00001 second to evaluate Sv(S)
once. Then we still need about 3 months to find the best-5
nodes with the highest ‘Shield-value’ score!

5.2 ProposedNetShieldAlgorithm

The proposedNetShieldis given in Alg. 1. In Alg. 1, we
compute the first eigenvalueλ and the corresponding eigen-
vectoru in step 1. In step 4, then×1 vectorv measures the
‘Shield-value’ score of each individual node. Then, in each
iteration of steps 6-17, we greedily select one more node
and add it into setS according to score(j) (step 13). Note
that steps 10-12 are to exclude those nodes that are already
in the selected setS.

6 Experimental Evaluations

We present detailed experimental results in this section.
All the experiments are designed to answer the following
questions:

1: (Effectiveness) How effective is the proposed Sv(S) in
real graphs?

2: (Efficiency) How fast and scalable is the proposedNet-
Shield?

6.1 Data sets

We used three real data sets, which are summarized in
table 2. The first data set (Karate) is a unipartite graph,
which describes the friendship among the 34 members of a
karate club at a US university [17]. Each node is a member

3We assume thatk is relatively small compared withn andm (e.g.,
tens or hundreds). Therefore, after deletingk rows/columns fromA, we
still haveO(m) edges.

Algorithm 1 NetShield
Input: the adjacency matrixA and an integerk
Output: a setS with k nodes

1: compute the first eigen-valueλ of A; let u be the cor-
responding eigen-vectoru(j)(j = 1, ..., n);

2: initialize S to be empty;
3: for j = 1 to n do
4: v(j) = (2 · λ − A(j, j)) · u(j)2;
5: end for
6: for iter = 1 to k do
7: let B = A(:,S);
8: let b = B · u(S);
9: for j = 1 to n do

10: if j ∈ S then
11: let score(j) = −1;
12: else
13: let score(j) = v(j) − 2 · b(j) · u(j);
14: end if
15: end for
16: let i = argmaxjscore(j), addi to setS;
17: end for
18: returnS.

Table 2. Summary of the data sets
Name n m

Karate 34 152
AA 418,236 2,753,798

NetFlix 2,667,199 171,460,874

in the karate club and the existence of the edge indicates
that the two corresponding members are friends. Overall,
we haven = 34 nodes andm = 156 edges.

The second data set (AA) is an author-author network
from DBLP.4 AA is a co-authorship network, where each
node is an author and the existence of an edge indicates
the co-authorship between the two corresponding persons.
Overall, we haven = 418, 236 nodes andm = 2, 753, 798
edges. We also construct much smaller co-authorship net-
works, using the authors from only one conference (e.g.,
KDD, SIGIR, SIGMOD, etc.). For example,KDD is the
co-authorship network for the authors in the ‘KDD’ confer-
ence. For these smaller co-authorship networks, they typi-
cally have a few thousand nodes and up to a few ten thou-
sand edges.

The last data set (NetFlix) is from the Netflix prize.5 This
is also a bipartite graph. We have two types of nodes: user
and movie. The existence of an edge indicates that the cor-
responding user has rated the corresponding movie. Over-
all, we haven = 2, 667, 199 nodes andm = 171, 460, 874
edges. This is a bipartite graph, and we convert it to a uni-

partite graphA: A =

(

0 B

B
′

0

)

, where0 is a matrix with

4http://www.informatik.uni-trier.de/˜ley/db/
5http://www.netflixprize.com/



Table 3. Evaluation on the approximation accuracy of
f(S). Larger is better.

k ‘KDD’ ‘ICDM’ ‘SDM’ ‘SIGMOD’

1 0.9519 0.9908 0.9995 1.0000
2 0.9629 0.9910 0.9984 0.9927
5 0.9721 0.9888 0.9992 0.9895
10 0.9726 0.9863 0.9987 0.9852
20 0.9683 0.9798 0.9929 0.9772

all zero entries andB is the adjacency matrix of the bipartite
graph.
6.2 Effectiveness

Here, we first test the approximation accuracy of the pro-
posed Sv(S). Then, we compared the different immuniza-
tion policies.

6.2.1 Approximation quality of Sv(S)
The proposedNetShieldis based on eq. (2). That is, we
want to approximate the first eigen-value of the perturbed
matrix byλ andu. Here, let us experimentally evaluate how
good this approximation is on real graphs. We construct an
authorship network from one of the following conferences:
‘KDD’, ‘ICDM’, ‘SDM’ and ‘SIGMOD’ . We then compute
the linear correlation coefficient between∆λ(S) and Sv(S)
with several differentk values (k = 1, 2, 5, 10, 20). The re-
sults are shown in table 3. It can be seen that the approxi-
mation is very good - in all the cases, the linear correlation
coefficient is greater than0.95.

6.2.2 Immunization by NetShield

The proposed ‘Vulnerability’ score of the graph is motivated
by the epidemic threshold [2]. As a consequence, the pro-
posedNetShieldleads to a natural immunization strategy for
the SIS model (susceptible-infective-susceptible, like,e.g.,
the flu): quarantine or delete the subset of the nodes de-
tected byNetShieldin order to prevent an epidemic from
breaking out.6

We compare it with the following alternative choices: (1)
picking a random neighbor of a randomly chosen node[3]
(‘Aquaintance’), (2) picking the nodes with the highest
eigen scoresu(i)(i = 1, ..., n) (‘Eigs’)7, (3) picking the
nodes with the highest abnormality scores [15] (‘abnormal-
ity’), (4) picking the nodes with the highest betweenness
centrality scores based on the shortest path [6](‘Short’),
(5) picking the nodes with the highest betweenness cen-
trality scores based on random walks [11](‘N.RW’), (6)
picking the nodes with the highest degress (‘Degree’),
and (7) picking the nodes with the highest PageRank

6According to [2], for SIR (susceptible-infective-recovered) model, its
epidemic threshold is also determined byλ. Therefore, we expect that our
NetShieldcan also help with the immunization for the SIR model.

7For the un-directed graph which we focus on in this paper, ‘Eigs’ is
equivalent to ‘HITS’[9].

scores [13](‘PageRank’). For each method, we delete5
nodes for immunization. Lets = λ · b/d be the normal-
ized virus strength (biggers means more stronger virus),
whereb andd are the infection rate and death rate, respec-
tively. The result is presented in figure 1, which is aver-
aged over 1000 runs. It can be seen that the proposedNet-
Shieldis always the best, - its curve is always the lowest
which means that we always have the least number of in-
fected nodes in the graph with this immunization strategy.
Notice that the performance of ‘Eigs’ is much worse than
the proposedNetShield. This indicates that bycollectively
finding a set of nodes with the highest ‘Shield-value’, we in-
deed obtain extra performance gain (compared with naı̈vely
choosing the top-k nodes which have the highestindividual
‘Shield-value’ scores).
6.3 Efficiency

We will study the wall-clock running time of the pro-
posedNetShieldhere. Basically, we want to answer the fol-
lowing two questions:

1. (Speed)What is the speedup of the proposedNetShield
over the straight-forward methods (‘Com-Eigs’ and
‘Com-Eval’)?

2. (Scalability)How doesNetShieldscale with the size of
the graph (n andm) andk?

For the results we report in this subsection, all of the ex-
periments are done on the same machine with four 2.4GHz
AMD CPUs and 48GB memory, running Linux (2.6 ker-
nel). If the program takes more than 1,000,000 seconds, we
stop running it.

First, we compareNetShieldwith ‘Com-Eigs’ and ‘Com-
Eval’. Figure 2 shows the comparison on three real data
sets. We can make the following conclusions: (1) Straight-
forward methods (‘Com-Eigs’ and ‘Com-Eval’) are compu-
tationally intractable even for a small graph. For example,
on theKaratedata set with only 34 nodes, it takes more than
100,000 and 1,000 seconds to find the best-10 by ‘Com-
Eigs’ and by ‘Com-Eval’, respectively. (2) The speedup of
the proposedNetShieldover both ‘Com-Eigs’ and ‘Com-
Eval’ is huge - in most cases, we achieveseveral (up to
7) orders of magnitudespeedups! (3) The speedup of the
proposedNetShieldover both ‘Com-Eigs’ and ‘Com-Eval’
quickly increases wrt the size of the graph as well ask. (4)
For a given size of the graph (fixedn andm), the wall-clock
time is almost constant - suggesting thatNetShieldspends
most of its running time in computingλ andu.

Next, we evaluate the scalability ofNetShield. From fig-
ure 3, it can be seen thatNetShieldscales linearly wrt both
n andm, which means that it is suitable for large graphs.

7 Related Work
In this section, we review the related work, which can be

categorized into 3 parts: measuring the importance of nodes
on graphs, immunization, and spectral graph analysis.
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Figure 1. Evaluation of immunization ofNetShieldon theKarategraph. The fraction of infected nodes (in log-scale)
vs. the time step.s is normalized virus strength. Lower is better. The proposedNetShieldis always the best, leading to
the fastest healing of the graph. Best viewed in color.

(a)Karate (b) AA (c) NetFlix
Figure 2. Wall-clock time vs. the budgetk for different methods. The time is in the logarithmic scale.Our NetShield
(red star) is much faster. Lower is better.

Measuring Importance of Nodes on Graphs. In the
literature, there are a lot of node importance measurements,
including betweeness centrality, both the one based on the
shortest path [6] and the one based on random walks [11],
PageRank [13], HITS [9], and coreness score (defined by
k-core decomposition) [10].

Immunization. There is vast literature on virus propa-
gation and epidemic thresholds: for full cliques (eg., Heth-
cote [8]), for power-law graphs [1], and studies of heuristics
for immunization policies [3]. The only papers that study
arbitrary graphs focus on the epidemic threshold (Wang et
al. [16] and its follow-up work [7],[2].

In short, none of the above papers solves the problem of
optimal immunization for an arbitrary, given graph.

Spectral Graph Analysis. Pioneering works in this as-
pect can be traced back to Fiedler’s seminal work [5]. Rep-
resentative follow-up works include [14, 12, 18, 4], etc. All
of these works use the eigen-vectors of the graph (or the
graph Laplacian) to find communities in the graph.

8 Conclusion
We studied the ‘Vulnerability’ of large real graphs. Be-

sides the problem definitions, our main contributions are
1. A novel definition of ‘Shield-value’ score Sv(S) for a

set of nodesS.
2. A effectiveandscalablealgorithm (NetShield) to find

a set of nodes with the highest ‘Shield-value’ score.
3. Extensive experiments on several real data sets, illus-

trating both the effectiveness as well as the efficiency
of our methods.

Specifically, the proposed method (a) gives an effective
immunization strategy (b) scales linearly with the size of the
graph (number of edges) and (c) outperforms competitors
by severalorders of magnitude.

A promising research direction is to parallelize the cur-
rent method (e.g., using Hadoop8). Another one is to study
extensions for additional virus propagation models, like
SIR [8] etc.

8http://hadoop.apache.org/
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