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ABSTRACT

Given a set of people and a set of events attended by them,
we address the problem of measuring connectedness or tie
strength between each pair of persons. The underlying as-
sumption is that attendance at mutual events gives an implicit
social network between people. We take an axiomatic ap-
proach to this problem. Starting from a list of axioms, which
a measure of tie strength must satisfy, we characterize func-
tions that satisfy all the axioms. We then show that there is
a range of tie-strength measures that satisfy this characteriza-
tion.

A measure of tie strength induces a ranking on the edges of
the social network (and on the set of neighbors for every per-
son). We show that for applications where the ranking, and
not the absolute value of the tie strength, is the important
thing about the measure, the axioms are equivalent to a nat-
ural partial order. To settle on a particular measure, we must
make a non-obvious decision about extending this partial or-
der to a total order. This decision is best left to particular
applications. We also classify existing tie-strength measures
according to the axioms that they satisfy; and observe that
none of the “self-referential” tie-strength measures satisfy the
axioms. In our experiments, we demonstrate the efficacy of
our approach; show the completeness and soundness of our
axioms, and present Kendall Tau Rank Correlation between
various tie-strength measures.
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INTRODUCTION

Explicitly declared friendship links suffer from a low signal
to noise ratio (e.g. Facebook friends or LinkedIn contacts).
Links are added for a variety of reasons like reciprocation,
peer-pressure, etc. Detecting which of these links are impor-
tant is a challenge.

Social structures are implied by various interactions between
users of a network. We look at event information, where users
participate in mutual events. Our goal is to infer the strength
of ties between various users given this event information —
i.e. the implicit social networks.

There has been a surge of interest in implicit social net-
works. We can see anecdotal evidence for this in startups
like COLOR (http://www.color.com) and new features in
products like Gmail. COLOR builds an implicit social net-
work based on people’s proximity information while taking
photos.! Gmail’s don’t forget bob feature uses an implicit so-
cial network to suggest new people to add to an email given a
existing list [16].

Consider people attending different events with each other.
We define an event by the set of people that attend it. An
event can represent the set of people who took a photo at the
same place and time, like COLOR, or a set of people who
are on an email, like in Gmail. Given the set of events, we
would like to infer how connected two people are —i.e. we
would like to measure the strength of the tie between people.
All that is known about each event is the list of people who
attended it. People attend events based on an implicit social
network (with ties between pairs of people). We want to solve
the inference problem of finding the weighted social network
that gives rise to the set of observed events.

Given a bipartite (a.k.a. two-mode) graph, with people as one
set of vertices and events as the other set, we want to infer the
tie-strength between the set of people. Hence, in our prob-
lem, we do not even have access to any directly declared (i.e.,
explicit) social network between people. We want to infer the
implicit social network based on the set of people who inter-
act together at different events.

We start with a set of axioms and find a characterization of
functions that could serve as a measure of tie strength, just
given the event information. We do not end up with a sin-
gle function that works best under all circumstances. In fact,
we show that there are non-obvious decisions that need to be
made to settle down on a single measure of tie strength.

1http ://mashable.com/2011/03/24/color/
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Moreover, we examine the case where the absolute value of
the tie strength is not important, but its order is important (see
Section “Tie Strength and Orderings”). We show that in this
case the axioms are equivalent to a natural partial order on the
strength of ties. We also show that choosing a particular tie
strength function is equivalent to choosing a particular linear
extension of this partial order (which yields a total order).

Our contributions are:

o We present an axiomatic approach to the problem of infer-
ring tie strength in implicit social networks.

o We characterize functions that satisfy all the axioms and
show a range of measures that satisfy this characterization.

e We show that in ranking applications, the axioms are
equivalent to a natural partial order. We demonstrate
that to settle on a particular measure, we must make non-
obvious decisions about extending this partial order to a
total order, which is best left to the particular application.

o We classify measures found in prior literature according to
the axioms that they satisfy.

e In our experiments, we illustrate the efficacy of our ap-
proach by demonstrating that event information produces
useful predictions of tie-strength. We measure the sound-
ness and completeness of our axioms. We also present
the Kendall’s Tau Rank Correlation between various tie-
strength measures.

The remainder of this paper is structured as follows: Re-
lated Work, Model, Axioms of Tie Strength, Measures of Tie
Strength, Experiments, and Conclusions.

RELATED WORK
We split the related works into different subsections that em-
phasize particular methods/applications.

Strength of Ties: Granovetter [8] introduces the notion of
strength of ties in social networks. He shows that weak ties
are important for various aspects like spread of information
in social networks. There have been various studies on iden-
tifying the strength of ties given different features of a graph.
Gilbert & Karahalios [7] model tie strength as a linear combi-
nation of node attributes (e.g., intensity and intimacy) to clas-
sify ties in a social network as strong or weak. Weights on
attributes enable them to find attributes that are most useful
in making tie-strength predictions. Kahanda & Neville [11]
take a supervised learning approach to the problem by con-
structing a predictor that determines whether a link in a social
network is a strong tie or a weak tie. They report that network
transactional features, which combine network structure with
transactional features (such as the number of wall posting)
form the best predictors.

Link Prediction: Adamic & Adar [1] consider the problem
of predicting links between Web-pages of individuals, using
information such as membership of mailing lists and use of
common phrases on Web pages. They define a measure of
similarity between users by creating a bipartite graph of users
on the left and features (e.g., phrases and mailing-lists) on the

right as w(u, v) = 37 weighbor of utcw) Tog i+ Liben-Nowell
& Kleinberg [14] formalize the problem of predicting which
new interactions will occur in a social network given a snap-
shot of the current state of the network. They use many exist-
ing predictors of similarity between nodes (such as Adamic-
Adar [1], SimRank[9], and Katz [13]); and generate a ranking
of node-pairs, which were not connected by an edge. To mea-
sure the efficacy of various measures, they compare across
different datasets. Their main finding is that there is enough
information in the network structure that all the predictors
handily beat the random predictor, but not enough that the ab-
solute number of predictions is high. Allali et al. [2] address
the problem of predicting links in a bipartite network. They
define internal links as links between left nodes that have a
right node in common (i.e. nodes that are at a distance of
two from each other); then offer predictions that are only for
internal links.

Email networks: Because of the ubiquitous nature of email,
there has been a lot of work on various aspects of email net-
works. Roth et al. [16] discuss a way to suggest more re-
cipients for an email given the sender and the current set of
recipients. This feature has been integrated in the Google’s
popular Gmail service.

Axiomatic approach to Similarity: Altman & Tennen-
holtz [3] were one of the first to axiomatize graph measures.
In particular, they studied axiomatizing PageRank. More re-
cently, Jin et al. [10] present an axiomatic ranking of network
role similarity. The closest in spirit to our work is the work
by Lin [15] that defines an information-theoretic measure of
similarity. This measure depends on the existence of a prob-
ability distribution on the features that define objects. While
the measure of tie strength between people is similar to a mea-
sure of similarity, there are important differences. We do not
have any probability distribution over events, just a log of the
ones that occurred. More importantly, Lin [15] defines items
by the attributes or features they have. Hence, items with the
same features are identical. In our case, even if two people at-
tend all the same events, they are not the same person, and in
fact they might not even have very high tie strength depending
on how large the events were.

MODEL

We model people and events as nodes and use a bipartite
graph G = (L U R, E) where the edges represent mem-
bership. The left vertices L correspond to people while
the right vertices R correspond to events. Except for the
set of people who attended the events, we ignore all other
features/information about events such as timing, location,
and the inherent importance of events. These are features
that would be important to the overall goal of measuring tie
strength between users, but in this work we focus on the task
of inferring tie strength using only the graph structure. Hence,
in our model an event is defined only by the set of people that
attend it.

We shall denote users in L by small letters (u,v,...) and
events in R by capital letters (P, @, . . .). There is an edge be-
tween v and P if and only if u attended event P. Hence, our



problem is to find a function on bipartite graphs that models
tie strength between people, given this bipartite graph repre-
sentation of people and events. Figure 1 shows an example of
a bipartite person xevent graph.

Input Output
People x Event Bipartite Graph Partial order of Tie Strength among People
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Figure 1. Given a bipartite person x event graph, we want to infer the
induced partial order of tie strength among the people.

We also introduce some notation. We shall denote the tie
strength of v and v due to a graph G as T'Sg(u,v) or as
T'S(u,v) if G is obvious from context. We shall also use
TS(g,,.. .y (u,v) to denote the tie strength between u and
v in the graph induced by events { £y, . .., E) } and users that
attend at least one of these events. For a single event I,
then T'Sg(u,v) denotes the tie strength between v and v if
FE where the only event.

We denote the set of natural numbers by N. A sequence of
k natural numbers is given by (a1, ..., ax) and the set of all
such sequences is N*. The set of all finite sequence of natural
numbers is represented as N* = U, N*

AXIOMS OF TIE STRENGTH

We now discuss the various intuitive properties that we want
any measure of tie strength between two users u and v to sat-
isfy. We formalize these intuitions as axioms that a measure
must follow.

Intuition for Axiom 1: We focus our attention on the prob-
lem of inferring tie strength between every pair of vertices
while actively ignoring information about what the events
themselves might signify. Therefore, tie strength should not
depend on the particular labels we give to events or people.

Axiom 1 (Isomorphism). Suppose we have two graphs G and
H and a mapping of vertices such that G and H are isomor-
phic. Let vertex u of G map to vertex a of H and vertex v
to b. Then TSg(u,v) = TSy (a,b). Hence, the tie strength
between u and v does not depend on the labels of u and v,
only on the link structure.

Intuition for Axiom 2: Since T'S(u, v) produces a real num-
ber, we would like to normalize the measure. There are many
different ways to normalize the measure that would be mathe-
matically consistent. We select one that is intuitively obvious.
Our next axiom comes from the intuition that tie strength be-
tween two people who have never been at an event together
is 0. Similarly, we choose as unit strength as the strength of a

tie between two people who have only been at a single event
with each other.

Axiom 2 (Baseline). If there are no events, i.e. the graph is
empty, then the tie strength between every pair v and v is 0.
TSy(u,v) = 0. If there are only two people v and v and
a single event which they attend, then their tie strength is 1.
TS{W,}(U, ’U) =1

Intuition for Axiom 3: We would like to reason about the
effect of attending multiple events together on tie strength.
Social psychology literature [17, 4] gives us the familiarity
effect, which states that as individuals become more familiar
with each other, they develop more positive feelings towards
each other.

Axiom 3 (Frequency: More events create stronger ties). All
other things being equal, the more events common to u and
v, the stronger the tie strength between u and v. Formally,
consider a graph G = (LU R, E) and two vertices u,v € L.
Also, consider the graph G’ = (LU (RUP),EUP,,, ),
where Py, ,, ... is a new event which both u and v attend. Then,

TScr (u,v) > TS (u,v).

Intuition for Axiom 4: The number of people at an event
clearly affects the strength of ties between individuals. The
intuition here is that smaller events are more intimate and
hence create stronger individual ties.

Axiom 4 (Intimacy: Smaller events create stronger ties). All
other things being equal, the fewer invitees there are to any
particular event attended by u and v, the stronger the tie
strength between u and v.

Formally, consider a graph G = (LUR, E) such that P € R
and (u, P), (v, P), (w, P) € E for some vertex w. Also,
consider the graph G' = ((LU R), E — (w, P))), where the
edge (w, P) is deleted. Then, TS¢(u,v) < TSc¢r(u,v).

Intuition for Axiom 5: The previous two axioms dealt with
the strength of individual ties with a group. The next one
deals with the total tie-strength “capital” generated by an
event. The intuition here is that larger events create more
“capital” than smaller events.

Axiom 5 (Popularity: Larger events create more ties). Con-
sider two events P and Q). If the number of people attending
P is larger than the number of people attending Q, then the
total tie strength created by event P is more than that created
by event Q. Formally,

|P| > |Q‘ = Zu,vGPTSP(u7U) 2 Zu,vGQ TSQ(U’ U)'

Intuition for Axiom 6: The next axiom captures the intuition
of independence between individuals. It states that events
at which an individual is not present, do not affect the tie
strength of that individual with other individuals who were
present at those events. While simple to state, this axiom is a
very strong axiom and does not allow for indirect effects.

Axiom 6 (Conditional Independence of Vertices). The tie
strength of a vertex u to other vertices does not depend on
events that u does not attend; it only depends on events that
u attends.

Intuition for Axiom 7: The next axiom captures the intuition
of independence between events. It states that the increase in



tie strength due to an event depends only on the the event
itself and on the existing tie strength between v and v and not
on other events. This is another very strong axiom that does
not allow for indirect effects.

Axiom 7 (Conditional Independence of Events). The in-
crease in tie strength between u and v due to an event
P does not depend on other events, just on the existing
tie strength between u and v. Formally, TScyp(u,v) =
9(T'Sq(u,v), TSp(u,v)) for some fixed monotonically in-
creasing function g.

Intuition for Axiom 8: Our final axiom states that tie-
strength follows the law of diminishing returns (where adding
an element to a smaller set helps more than adding it to a
larger set).

Axiom 8 (Submodularity). The marginal increase in tie
strength of u and v due to an event () is at most the tie strength
between u and v if QQ was their only event. Formally, for
a graph G, and every event Q, TS (u,v) + T'Sg(u,v) >
TSG+Q (u7 1)).

Discussion

These axioms give a measure of tie strength between nodes
that is positive but unbounded.? Pairs of nodes that have a
higher 7S value are closer to each other than pairs that have
lower T'S value.

We get a sense of the axioms by applying them to Figure 1.
Axiom 1 (Isomorphism) implies that T'S(b,c) = T'S(b,d)
and T'S(c,e) = TS(d,e). Axioms 2 (Baseline), 6 (Con-
ditional Independence of Vertices), and 7 (Conditional In-
dependence of Events) imply that 7°.S(a,c) = T'S(a,d) =
TS(a,e) = TS(b,e) = 0. Axiom 4 (Intimacy) implies that
TS(a,b) > TS(d,e). Axiom 3 (Frequency) implies that
TS(c,d) >TS(d,e).

While each of the aforementioned axioms are fairly intuitive,
they are hardly trivial. In fact, we shall see that various mea-
sures used in prior literature break some of these axioms. On
the other hand, it might seem that satisfying all the axioms
is a fairly strict condition. However, we shall see that even
satisfying all the axioms is not sufficient to uniquely identify
a measure of tie strength. That is, the axioms leave consider-
able space for different measures of tie strength.

One reason the axioms do not define a particular function
is that there is an inherent tension between Axiom 3 (Fre-
quency) and Axiom 4 (Intimacy). While both state ways in
which tie strength becomes stronger, the axioms do not re-
solve which one dominates the other or how they interact with
each other. This is a non-obvious decision that we feel is best
left to the application in question. In Figure 1, we cannot
tell by using just Axioms 1 through 8 which of T'S(a, b) and
TS(c,d) is larger. We discuss this further in Section “Tie
Strength and Orderings.”

Given that we cannot obtain a single measure of tie-strength
that can be used in all applications, the allure of the axiomatic

?For a fixed graph G with k events, the tie-strength between any two
nodes has an upper-bound of ().

approach is to classify existing and future measures and to un-
derstand the exact trade-offs involved while choosing a par-
ticular measure within the constraints imposed by the partic-
ular application at hand.

Characterizing Tie Strength

In this section, we shall state and prove Theorem 6 that gives
a characterization of all functions that satisfy the aforemen-
tioned axioms of tie strength. Axioms 1 through 8 do not
uniquely define a function. In fact, one of the reasons that tie
strength is not uniquely defined by the given axioms is that
we do not have any notion for comparing the relative impor-
tance of number of events (frequency) versus the exclusivity
of events (intimacy). For example, in terms of the partial or-
der, it is not clear the tie strength of u and v when they attend
two events with two people attending each event is stronger
than or weaker than when u and v attend three events each of
which have three people attending them.

We shall use the following definition for deciding how much
total tie strength a single event generates, given the size of the
event.

Notation 1. If k people attend a single event, we shall denote
the total tie-strength generated as f (k).

Lemma 2 (Local Neighborhood). The tie strength of uw and v
is affected only by the events that both u and v attend.

Proof. Given a graph G and users v and v in G, let G™*
denote the graph obtained by deleting all events in which
does not participate. Similarly, let G™*" be the graph ob-
tained by deleting all events of G~ in which v does not
participate. By 6, tie strength of u only depends on events
that u attends. Hence, T'S¢ (u,v) = T'Sg-u(u,v). Also, tie
strength of v only depends on events that v attends. Hence,
TSc(u,v) = TSg-u(u,v) = TSg-uwv(u,v). This proves
our claim. O

Lemma 3. The tie strength between any two people is always
non-negative and is equal to zero if they have never attended
an event together.

Proof. If two people have never attended an event together,
then from Lemma 2 their tie strength remains unchanged if
we delete all the events not containing either (which in this
case is all the events). Then, Axiom 2 (Baseline) tells us that
TS(u,v) = 0.

Suppose that for a graph G = (V. E), E = {Ey,..., Ey}.
Then, Axiom 3 (Frequency) implies that T'Sg(u,v) >
TSig-p,y(u,v) > --- > TSy(u,v) = 0. Hence, the tie
strength is always non-negative. O

Lemma 4. If there is a single event with k people, the tie
f(k)
(2)
Proof. By Axiom 1 (Isomorphism), it follows that the tie-
strength on each tie is the same. Since the sum of all the
ties is equal to f(k), and there are (’2“) edges, the tie-strength

strength of each tie is equal to

of each edge is equal to f((kk)) . O

2



Lemma 5. The total tie strength created at an event E with
k people is a monotone function f(k) that is bounded by 1 <

Flk) < (5)

Proof. By Axiom 4 (Intimacy), the tie strength of « and v due
to E is less than an event where they are alone. T'Sg(u,v) <
TS(U’U)(u,v) = 1, by Axiom 2 (Baseline). Summing up
over all ties gives us that 3 T'Sg(u,v) < (’;) Also, by
Axiom 5 (Popularity), f(k) > f(i) : Vi < k. In particular,
f(k) > f(1) = 1. This proves the result. O

We are now ready to state the main theorem in this section.

Theorem 6. Given a graph G = (LUR, E) and two vertices
u, v. We now characterize Axioms I through 8 in terms of a
Sfunction on G. The tie-strength function T'S follows Axioms
1 through 8 if and only if the function is of the form

TS¢(u,v) = g(h(|Pr), (| P2]), - - h(| Pi[))

where { P; }1<i<y, are the events common to both w and v, and
| P| denotes the number of people attending event P, h : N —
R is a monotonically decreasing function bounded by h(0) =
0,h(1) = 1,1 > h(n) > ﬁ,n >2andg: N* - Risa

2
monotonically increasing submodular function.

Proof. Given two users u and v, we use Axioms 1 through
8 to successively change the form of T'S¢(u,v) to first
prove that its of the form described above. Let {P;}1<i<k
be all the events common to v and v. Axiom 7 (Condi-
tional Independence of Events) implies that 7'Sg(u,v) =
g(T'Sp,(u,v))1<i<k, Where g is a monotonically increas-
ing submodular function. Given an event P, T'Sp(u,v) =

h(|P]) = f((,‘};l). By Axiom 4 (Intimacy), h is a monotoni-

cally decreasing function. Also, by Lemma 5, f is bounded
by 1 < f(n) < (%). Hence, h is bounded by 1 > h(n) >
ﬁ. This completes the first part of the proof. To prove the

2
converse we need to verify that each axiom is satisfied if the

tie-strength function follows the form described in the theo-
rem. This is fairly straightforward to verify and we leave it
out for brevity. O

Theorem 6 gives us a way to explore the space of valid
functions for representing tie strength and for finding which
work for a given application. In Section “Measures of Tie
Strength,” we shall look at popular measures of tie strength
and show that most of them follow Axioms 1 through 8, and
hence are of the form described by Theorem 6. We also de-
scribe the functions h and ¢ that characterize these common
measures of tie strength . While Theorem 6 gives a character-
ization of functions suitable for describing tie strength, they
leave open a wide variety of functions. In particular, it does
not give the comfort of having a single function that we could
use. We discuss the reasons for this and what we would need
to do to settle upon a particular function in the next section.

Tie Strength and Orderings
We begin this section with a definition of an ordering on ele-
ments in a set.

Definition 7 (Total Order). Given a set S and a binary re-
lation <p on S, O = (S, <p) is called a total order if and
only if it satisfies the following properties (i Total). for ev-
ery u,v € S, u <p vorv <o u (ii Anti-Symmetric).
u<pvandv <p u = u = v (iii Transitive). u <o v
andv <pw — u<pw

A total order is also called a linear order.

Consider a measure 7'S that assigns a measure of tie strength
to each pair of nodes u, v given the events that all nodes at-
tend in the form of a graph G. Since T'S assigns a real number
to each edge and the set of reals is totally ordered, T'S gives
a total order on all the edges upto equivalences. In fact, the
function 7'S actually gives a total ordering of N* upto equiv-
alences. In particular, if we fix a vertex u, then T'S induces a
total order on the set of neighbors of u, given by the increas-
ing values of 7'S on the corresponding edges.

The Partial Order on N*
We now review the definition of a partial order on elements
of a set.

Definition 8 (Partial Order). Given a set S and a binary
relation <p on S, P = (5,<p) is called a partial or-
der if and only if it satisfies the following properties (i Re-
flexive). for every uw € S,u <p wu (ii Anti-Symmetric).
u <puvandv <p u = wu = v (iii Transitive). u <p v
andv <pw = u<puw

The set S is called a partially ordered set or a poset.

Note the difference from a total order is that in a partial order
not every pair of elements is comparable. We shall now define
a natural partial order N' = (N*, <,/) on the set N* of all
finite sequences of natural numbers. Recall that N* = U, NF,
We shall think of this sequence as the number of common
events that a pair of users attend.

Definition 9 (Partial order on N*). Let a,b € N* where a =
(ai)1<i<a and b = (b;)1<i<p. We say that a > b if and
onlyif A > Band a; < b; : 1 < i < B. This gives the
partial order N' = (N*, <,/).

The partial order A corresponds to the intuition that more
events create stronger ties and that smaller events create
stronger ties. In fact, we claim that this is exactly the partial
order implied by the Axioms 1 through 8. Theorem 11 for-
malizes this intuition along with giving the proof. What we
would really like is a total ordering which would be equiva-
lent to a measure of tie strength. Can we go from the partial
ordering given by the Axioms 1 through 8 to a total order on
N*? Theorem 11 also suggests ways in which we can do this.

Partial Orderings and Linear Extensions

In this section, we connect the definitions of partial order and
the functions of tie strength that we are studying. First we
start with a definition.

Definition 10 (Linear Extension). £ = (S, <) is called the
linear extension of a given partial order P = (S, <p) if and
only if L is a total order and L is consistent with the ordering
defined by P, that is, for allu,v € S, u <pv = u <g v.



We are now ready to state the main theorem which character-
izes functions that satisfy Axioms 1 through 8 in terms of a
partial ordering on N*.

Fix nodes v and v and let Py, ..., P, be all the events that
both u and v attend. Consider the sequence of numbers
(|P:])1<i<k that give the number of people in each of these
events. Without loss of generality assume that these are sorted
in ascending order. Hence |P;| < |P;41|. We associate this
sorted sequence of numbers with the tie (u,v). The partial
order N induces a partial order on the set of pairs via this
mapping. We also call this partial order \. Fixing any partic-
ular measure of tie strength, gives a mapping of N* to R and
hence implies fixing a particular linear extension of A/, and
fixing a linear extension of N involves making non-obvious
decisions between elements of the partial order. We formalize
this in the next theorem.

Theorem 11. Let G = (L U R, E) be a bipartite graph of
users and events. For each pair of users, we associate a
sequence s € N*. Given two users (u,v) € (L x L), let
{|Pi|}1<i<k € R be the set of events common to users (u, v).

We associate the sequence n = (n;)1<i<r € N* with (u,v),
where n; is the sorted version of {|P;|}1<i<k € R.

Through this association, the partial order N' = (N*, <)
on finite sequences of numbers induces a partial order on L x
L which we also call .

Let T'S be a function that satisfies Axioms 1 through 8. Then
TS induces a total order on the edges that is a linear exten-
sion of the partial order N on L x L.

Conversely, for every linear extension L of the partial order
N, we can find a function T'S that induces L on L x L and
that satisfies Axioms I through 8.

Proof. Suppose we are given a tie strength function 75 : L x
L — R. Hence, it gives a total order on the set of pairs of
user. We want to show that if 7'S satisfies Axioms 1 through
8, then the total order is a linear extension of .

The characterization in Theorem 6 states that given a pair of
vertices (u,v) € (L x L), T'S(u,v) is characterized by the
number of users in events common to w and v; and it can
be expressed as T'Sq(u, v) = g(h(|P;]))1<i<x Where g is a
monotone submodular function and h is a monotone decreas-
ing function. Since T'S : L x L — R, it induces a total order
on all pairs of users. We now show that this total order is a
consistent with the partial order V.

Consider two pairs (u1,v1), (ug, v2) with event profiles x =
(z1,...,zx)and y = (y1,...,yy). Suppose x >, y. We
want to show that T'S(u1,v1) > TS(ug,v2). & >x y im-
pliesthat X > Y andthatz; <y, : V1 <:i<Y.

T'S(u1,v1)

=g(h(@1), ..., h(zx))

> g(h(z1),...,h(zy)) (because g is monotone and X > Y)
> g(h(y1),-..,h(ys)) (because g is monotone increasing,

h is monotone decreasing, and z; < y;)
= TS(’U,Q, ’1)2)

This proves the first part of the theorem.

For the converse, we are given a total ordering £ = (N*, <)
that is an extension of the partial order A/. We want to prove
that there exists a tie strength function 7S : L x L. — R
that satisfies Axioms 1 through 8 and that induces £ on
L x L. We shall prove this by constructing such a func-
tion. We shall define a function f : N* — Q and define
TSc(u,v) = f(ai,...,ar), where a; = | FP;|, the number of
users that attend event P; in G.

Define f(n) = -5 and f(¢) = 0. Hence, T'Sy(u,v) =
f(®) = 0and TSq, 3 (u,v) = f(2) = 555 = 1. This
shows that T'S satisfies Axiom 2. Also, define

Since N* is countable, consider elements in some order.
If for the current element a under consideration, there ex-
ists an element b such that a =x b and we have al-
ready defined T'S(b), then define T'S(a) = TS(b). Else,
let ag, = argmazxe {T'S(e) is defined and @ > e} and let
ajp = argmin, {T'S(e) is defined and @ < e}. Since, at
every point the sets over which we take the maximum of min-
imum are finite, both a4, and a;,, are well defined and exist.

Define T'S(a) = 5 (T'S(agi) + T'S(au)). =

In this abstract framework, an intuitively appealing linear ex-
tension is the random linear extension of the partial order un-
der consideration. Polynomial time algorithms exist for this
to calculation [12]. We leave the analysis of the analytical
properties and its viability as a strength function in real world
applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have been
proposed before as well as some new ones.

MEASURES OF TIE STRENGTH

There have been many measures of tie-strength discussed in
previous literature. We review the most popular here and clas-
sify them according to the axioms that they satisfy. In this
section, for a node u, the set of events that u attends (i.e.
its neighborhood in the node xevent graph) is represented by
I'(u). For an event P, we denote by | P| the number of people
that attended event P.

Common Neighbors. This is the simplest measure of tie
strength and is equal to the total number of common events
that both u and v attended.

TS(u,v) = [T(u) NT(v)]
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index, which normalizes for how “so-
cial” v and v are
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Table 1. Measures of tie strength and the axioms they satisfy

Delta. Tie strength increases with the number of events.

D

Pel'(u)Nl(v) (U;‘)

—_

TS(u,v) =

Adamic and Adar. This measure was introduced in [1].

1
Z log | P|

Pel(u)nI'(v)

TS(u,v) =

Linear. Tie strength increases with the number of events.

>

Pel'(u)nl(v)

TS(u,v) =

Preferential attachment.
TS(u,v) = [L(u)] - [T'(v)]
Katz Measure. This was introduced in [13]. It counts the
number of paths between u and v, where each path is

discounted exponentially by the length of path. It is
parametrized by a constant 0 < v < 1.

TS(u,v) = Z

g€ path between u,v

7—\q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength. For each node u, we do a ran-
dom walk centered at « defined as follows. At each step,
the random walk jumps with probability « to the original
node u. With probability 1 — «, it picks a neighbor of the

current node uniformly at random. « is called the restart
probability. The tie strength between u and v is the station-
ary probability that we end at node v under this process.

Simrank. This captures the similarity between two nodes
u and v by recursively computing the similarity of their
neighbors. It is parametrized by a constant 0 < vy < 1.

1 ifu=wv
. Zaer(u) Zbel"(u) TS(a,b)
[T (u)]- T (v)]

TS5 (u,v) =
(u,v) otherwise

Next, we introduce three new measures of tie strength. Fol-
lowing notation from Theorem 6, g = > is at one extreme of
the range of functions allowed by the Theorem and that is the
default function used in the above measures. ¢ = max is at
the other extreme of the range of functions.

Max. Tie strength does not increase with number of events.
1

TS = —
(u,v) Perr&?r)w(r(v) |P|

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in an event. TS
is the fixed-point of this equation:

TS5(u,v)

TS(u,v) = Z T;D‘Jr(lfe)

Pel(u)Nl(v) Zwer(u) TS (u, w)

Temporal Proportional. This is similar to Proportional, but
with a temporal aspect. T'S is not a fixed point, but starts



Dataset # of People # of Events
Southern Women 18 14
The Tempest 19 34
A Comedy of Errors 19 40
Macbeth 38 67
Reality Mining Bluetooth 104 326,248
Enron Emails 32,471 371,321

Table 2. Datasets used in our experiments

with a default value and is changed according to the fol-
lowing equation, where the events are ordered by time.

TS(u,v,t)

TS(u,v,t—1)
o eﬁJr(lfe)z

if u and v do not attend P,
TS(u,v,t—1)

TS (uw i=T) otherwise

we Pt

Table 1 provides a classification of all these tie-strength mea-
sures, according to which axioms they satisfy. If they satisfy
all the axioms, then we use Theorem 6 to find the character-
izing functions g and h. An interesting observation is that all
the “self-referential” measures (such as Katz Measure, Ran-
dom Walk with Restart, Simrank, and Proportional) fail to
satisfy the axioms. Another interesting observation is in the
classification of measures that satisfy the axioms. The major-
ity use ¢ = > to aggregate tie strength across events. Per
event, the majority compute tie strength as one over a simple
function of the size of the event.

EXPERIMENTS
Our experiments answer the following questions:

Efficacy of our Approach: Can we predict useful tie
strengths by using only event information and ignoring
other information like timing, event type, and intensity?

Axiom Completeness: What is the coverage of our axioms?
How much uncertainty in tie-strength rankings do our ax-
ioms remove?

Axiom Soundness: How different, in terms of conflicts in
rankings, are our axioms from the tie-strength measures
that do not satisfy them?

Rankings Correlation: How well do the rankings produced
by different measures correlate with each other?

Data
Table 2 lists our datasets. We briefly describe each dataset
next.

Davis Southern Women Social Events. We use the data col-
lected by Davis et al. [S] on 18 Southern women and their
attendances at 14 events from the 1930s.

Shakespearean Plays. We take three well-known plays by
Shakespeare (Macbeth, The Tempest, and A Comedy of Er-
rors) and create bipartite personxevent graphs. The person-
nodes are the characters in the play. Each event is a set of
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Figure 2. The inferred weighted social network between characters in
The Tempest. The thicker an edge, the stronger the tie. Tie strength was
calculated using the tie-strength measure Linear.

characters who are on the stage at the same time. We calculate
the strength of ties between each pair of nodes. Thus without
using any semantic information and even without analyzing
any dialogue, we estimate how much characters interact with
one another.

The Reality Mining Project [6]. The MIT Reality Mining
project gave approximately one hundred smart phones to par-
ticipants and logged information generated by these smart
phones for 9 months. We use the bluetooth proximity data
generated as part of this project. The bluetooth radio was
switched on every five minutes and logged other bluetooth
devices in close proximity. The people are the participants in
the study and events record the proximity between people.

Enron Emails.? This dataset consists of emails from the En-
ron corporation. We consider all emails that occur between
Enron addresses. Each email is an event and all the people
copied on that email —i.e., the sender (from) and the receivers
(to, cc and bcee) — are included in that event.

For brevity, we have omitted the plots showing the frequency
distributions of the number of people at an event across our
diverse data sets. As expected, these frequency distribution
are very different across the various data sets. For Enron
and Reality Mining, the distributions are scale free. For the
Shakespearean Plays, the distributions are unimodal and bell-
shaped. For the Southern Women data, the distribution is
multimodal.

Efficacy of Tie Strength Measures

We start with the Shakespearean datasets. The aim is to in-
fer strength of ties between characters of the play given only
proximity information. We model each scene as an event.
Concretely, an event is defined by the set of people on stage

3http: //www.cs.cmu.edu/~enron/


http://www.cs.cmu.edu/~enron/

at the same time. We obtain the strengths between characters
from three Shakespearean plays using the tie-strength mea-
sure Linear. Note that the inference is only based on people
occupying the stage at the same time and not on any seman-
tic analysis of the text. Figure 2 shows the inferred weighted
social network for The Tempest. For brevity, we have omit-
ted the networks for Macbeth and A Comedy of Errors. The
inferred weights (i.e., tie strengths) are consistent with the
stories. For example, the highest tie strengths are between
Ariel and Prospero in The Tempest. We also observed that the
highest tie strengths were between Macbeth and Lady Mac-
beth in the play Macbeth and between Dromio of Syracuse
and Antipholus of Syracuse in A Comedy of Errors. This ex-
periment demonstrates that using only event information can
capture the underlying tie strength between individuals.

Completeness of the Axioms

In Section “Axioms of Tie Strength,” we discussed axioms
governing tie strength and characterized the axioms in terms
of a partial order in Theorem 11. We shall now conduct an
experiment to determine the completeness of our set of ax-
ioms. Given a dataset, we measure completeness in terms of
the number of tie-pairs that are ranked by the partial order.
This will give us an empirical measure of how many tie-pairs
are unresolved by a tie-strength function that satisfies Axioms
1 through 8.

We use Theorem 11 to conduct this experiment. For differ-
ent datasets, we consider all possible rankings that satisfy our
axioms by generating the partial order between all ties im-
plied by Theorem 11.* We then calculate the percentage of
ties that are comparable under this partial order. A high per-
centage will indicate that most ties are actually resolved by
our axioms for real world datasets.

Each measure of tie strength gives a total order on the ties;
and, hence resolves all the comparisons between pairs of ties.
The number of tie-pairs which are left incomparable in the
partial order gives a notion of the how much room the axioms
leave open for different tie-strength functions to differ from
each other.

Table 3 shows the percentage of all ties that are not resolved
by the partial order (i.e., the percentage of the ties for which
the partial order cannot tells us if one tie is greater or if they
are equal); so a lower percentage is better. We observe that
the partial order defined by our axioms does indeed resolve
a very high percentage of the ties. Also, we see that our ax-
ioms resolve more ties in the scripted cleaner world of Shake-
spearean plays than in the real-world Reality Mining dataset.

Soundness of the Axioms

In the previous section, we looked at tie-strength functions
that satisfy the measures of tie-strength, and measured the
percentage of ties that were actually resolved by the axioms.
In this section, we consider the issue of soundness. To empir-
ically measure soundness, we look at measures of tie-strength

“The total number of tie pairs is ((g)), where n = # people vertices.

This means that for Enron Emails, the total number of tie pairs is
32471

((%37)) = 138,952, 356, 623, 361, 270,

Dataset Tie Pairs  Incomparable Pairs (%)
Southern Women 11,628 683 (5.87)
The Tempest 14,535 275 (1.89)
A Comedy of Errors 14,535 726 (4.99)
Macbeth 246,753 584 (0.24)
Reality Mining 13,794,378 1,764,546 (12.79)

Table 3. Number of ties not resolved by the partial order. The last col-
umn shows the percentage of tie pairs on which different tie-strength
functions can differ.

that have been used previously in literature, and find how
much they violate the axioms. To measure this, we use two
implications of Theorem 11. First, our axioms are equiva-
lent to the partial order on ties. Second, our axioms identify
functions that do not obey the partial order. So, we use the
proportion of tie-pairs in which the tie-strength order violates
the partial order predicted by the axioms. We look at two tie-
strength functions that do not obey the axioms: Jaccard Index
and Temporal Proportional. Table 4 shows the number of tie-
pairs that are actually in conflict. This experiment informs
us about how far away a measure is from the axioms. We
observe that for these datasets, Temporal Proportional agrees
with the partial order more than the Jaccard Index. We also
note that as the size of the dataset increases, the percentage of
conflicts decreases.

Dataset Tie Pairs Jaccard (%)  Temporal(%)
S. Women 11,628 1,441 (12.39) 665 (5.72)
Tempest 14,535 488 (3.36) 261 (1.80)
Comedy 14,535 1,114 (7.66) 381 (2.62)
Macbeth 246,753 2,638 (1.07) 978 (0.40)
Reality 13,794,378 290,934 (2.11) 112,546 (0.82)

Table 4. Number of conflicts between the partial order and tie-strength
functions: Jaccard Index and Temporal Proportional. The second and
third columns show the percentage of tie-pairs in conflict with the partial
order.

Measuring Correlation among Tie-Strength Functions
We want to measure how close different tie-strength functions
are to each other. To do this, we calculate the correlation be-
tween the rankings generated by these functions. Figure 3
shows Kendall 7 correlation coefficient for our datasets. We
find that, depending on the data set, different measures of tie
strength are correlated. For instance, in the “clean” world
of Shakespearean plays Common Neighbor is the least cor-
related measure; while in the “messy” real world data from
Reality Mining and Enron emails, Max is the least correlated
measure. Moreover, we observe that Common Neighbor and
Max are mostly uncorrelated (—0.2 < 7 < 0.2); and that
Adamic-Adar, Delta, and Linear are highly positively corre-
lated (7 > 0.6) no matter the dataset.

CONCLUSIONS

We presented an axiomatic approach to the problem of infer-
ring implicit social networks by measuring tie strength from
bipartite personxevent graphs. We characterized functions
that satisfy all axioms and demonstrated a range of measures
that satisfy this characterization. We showed that in ranking
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Figure 3. Measuring Kendall 7 correlations on rankings produced by different tie-strength measures (that satisfy our axioms) on our datasets. The
correlations highlight three groupings: {Adamic-Adar, Delta, Linear}, { Common-Neighbor}, {Max}. (a) Adamic-Adar (AA), Delta (D), and Linear
(Lin) produce tie-strength rankings that are highly correlated (0.6 < 7). (b) Common Neighbor (CN) and Max produce tie-strength rankings that
are mostly uncorrelated (—0.2 < 7 < 0.2) or slightly correlated (tau = 0.4 for Southern Women). (c) Since Adamic-Adar, Delta, and Linear are
highly correlated, their Kendall 7 correlations with Common Neighbor are similar; and are all positively correlated. Enron has the most varied
correlations from 7(CommonNeighbor, Delta) = 0.54 to 7(AdamicAdar, CommonNeighbor) = 0.91. (d) Again since Adamic-Adar, Delta,
and Linear are highly correlated, their Kendall 7 correlations with Max are similar. They are all positively correlated except on the Reality Mining
data set, where their rankings are uncorrelated with Max. On the Enron data set, their ranking is positively correlated with Max but varied from
T(AdamicAdar, Max) = 0.3 to 7(Delta, Max) = 0.65.

applications, the axioms are equivalent to a natural partial or-
der. We also demonstrated that to settle on a particular mea-
sure, we must make a non-obvious decision about extending
this partial order to a total order, which is best left to the par-
ticular application. We classified measures found in prior lit-
erature according to the axioms that they satisfy. Finally, our
experiments demonstrated the efficacy of our approach, the
completeness and soundness of our axioms, and the Kendall
T correlation between various tie-strength measures.
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