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ABSTRACT

We address the problem afithin-network classificationin
sparsely labeled networks. Recent work has denaipdtisuccess
with statistical relational learning(SRL) and semi-supervised
learning (SSL) on such problems. However, both approacdlgs r
on the availability of labeled nodes to infer tr@ues of missing
labels. When few labels are available, the perfoceaof these
approaches can degrade. In addition, many suclpagipes are
sensitive to the specific set of nodes labeled.aBbpugh average
performance may be acceptable, the performance speeific
task may not. We explore a complimentary approackwithin-
network classification, based on the uséabkl-independent (LI)
features— i.e., features not influenced by the valuesla$< la-
bels. While previous work has made some use oééatures, the
effects of these features on classification perforoe have not
been extensively studied. Here, we present an @apstudy in
order to better understand these effects. Througlkeranents on
several real-world data sets, we show that theofidd features
produces classifiers that are less sensitive toifspéabel assign-
ments and can lead to performance improvementsesf40% for
both SRL and SSL based classifiers. We also exathieelative
utility of individual LI features and show that, many cases, it is
a combination of a few diverse network-structufi@recteristics
that is most informative.
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H.2.8 [Database M anagement]: Database Applications Bata
Mining; 1.2.6 [Artificial Intelligence]: Learning; 1.5.1 Pattern
Recognition]: Models —Statistical 1.5.2 [Pattern Recognition]:
Design Methodology +eature evaluation and selection

General Terms
Algorithms, Performance, Experimentation.

Keywords
Statistical relational learning, semi-superviseariéng, social
network analysis, feature extraction, collectivassification.

Copyright 2008 Association for Computing Machine®&CM acknowl-
edges that this contribution was authored or cbaret by an employee,
contractor or affiliate of the U.S. Government. Agh, the Government
retains a nonexclusive, royalty-free right to psblior reproduce this
article, or to allow others to do so, for Governineurposes only.

The 2nd SNA-KDD Workshop 'Q8NA-KDD'08), August 24, 2008,
Las Vegas, Nevada, USA

Copyright 2008 ACM 978-1-59593-848-0...$5.00.

Tina Eliassi-Rad
Lawrence Livermore National Laboratory
P.0O. Box 808, L-560, Livermore, CA 94551

eliassi@linl.gov

1. INTRODUCTION

In this paper, we address the problem of withinmoek classifi-
cation. We are given a network in which some of tloeles are
“labeled” and others are “unlabeled.” Our goal gsaissign the
correct labels to the unlabeled nodes from amoset af possible
class labels (i.e., to “classify” them). For exaemplie may wish to
identify cell phone users as either ‘fraudulentlegitimate.’

Cell phone fraud is an example of an applicatiorremetworks
are often very sparsely labeled. We may have afbkhofiknown
fraudsters and a handful of known legitimate usbtg, for the
vast majority of users, we do not know the corfabel. For such
applications, it is reasonable to expect that wg have access to
labels for fewer than 10%, 5%, or even 1% of thdeso In addi-
tion, cell phone networks are generally anonymizébat is,
nodes in these networks often contain no attribbtesdes class
labels that could be used to identify them. It hsstkind of
sparsely labeled, anonymized network that is thmudoof this
work. Put another way, our work focuses wmvariate within-
network classification in sparsely labeled networks

Relational classifiers have been shown to perforefl wn net-
work classification tasks because of their abililymake use of
dependencies between class labels (or attribufeglaied nodes
[17]. However, because of their dependence onbates, the
performance of relational classifiers can substiigtidegrade
when a large proportion of neighboring instances aso unla-
beled. In many casespllective classificatiorprovides a solution
to this problem, by enabling the simultaneous diassion of a
number of related instances [15]. However, previusk has
shown that the performance of collective clasdificacan also
degrade when there are too few labels availabknteslly to the
point where classifiers perform better withoutli8].

In this paper, we explore another source of infaimmapresent in
networks that is independent of the available niadbels. Such
information can be represented using what we ¢altel-
independent (LI) feature§he main contribution of this paper is
an in-depth examination of the effects of labelependent fea-
tures on within-network classification. In partiaul we address
the following questions:

1. Can LI features make up for a lack of informatidue to
sparsely labeled data®nswer: Yes.

2. Can LI features provide information above angdral that
provided by the class labelghswer: Yes.

3. How do LI features improve classification penfiance?An-
swer: Because they are less sensitive to the spdaififeling as-



signhed to a graph, classifiers that use label-inaddpnt features
produce more consistent results across predictisikst

4. Which LI features are the most usefét®swer: A combination
of a few diverse network-structural characterisfiosde and link
counts and betweenness) is the most informative.

Section 2 covers related work. Section 3 descringsapproach
for modeling label-independent characteristics efinorks. Sec-
tions 4 and 5, respectively, present our experiaietsign and
results. We conclude the paper in Section 6.

2. RELATED WORK

In recent years, there has been a great deal d&f sosstatistical
relational learning (SRL) [5, 7, 8, 11, 13]. All BRechniques
make use of label-dependent relational informatiSome use
label-independent information as well. Relationabolibility
Trees [10] use degree-based features. Singh Et&luse struc-
tural properties to prune networks for attributediction. Neville
and Jensen [12] use spectral clustering to grosfamees based
on link structure and use these groups in leardiassifiers.

There has also been extensive work on overcomibel Isparsity
through techniques for label propagation. This wialks into two
research areas: (1) collective classification (££)6, 8, 9, 13, 15,
17] and (2) graph-based semi-supervised learnii®)$18, 19].
Previous work confirms our observation that thefqgrarance of CC
can suffer when labeled data is very sparse [13heOresearch
shows that commonly used approaches to collectassification
and semi-supervised learning are essentially etpritzaln particu-
lar, Macskassy and Provost [8] compare the SSL Simudfkandom
Field (GRF) model [18] to a SRL weighted-vote rielaal neighbor
(wvRN) model that uses relaxation labeling for @@RN+RL) and
conclude that the two models are nearly identigaeirms of accu-
racy, but GRF can produce better probability rag&inOur results
with wwRN+RL are consistent with this conclusionheT "ghost
edge" approach of Gallagher et al. [4] combinegetspof both SRL
and SSL, and compares favorably with both wRN+Rd &RF.

3. Label-Dependent vs. Independent Features
Relational classifiers leverage link structure npiove perform-
ance. Most frequently, links are used to incorpotribute in-
formation from neighboring nodes. However, linkusture can
also be used to extract structural statistics aofode (e.g., the
number of adjacent links). We can divide relatiofegtures into
two categories: label-dependent and label-indepgnde

Label-dependen{LD) features use both structure and attributes
(or labels) of nodes in the network. The most commased LD
features are aggregations of the class labels désx@ne link
away (e.g., the number of neighbors with the clabsl ‘fraudu-
lent). LD features are the basis for incorporatingtretel infor-
mation in many SRL classifiertabel-independenfLI) features
use network structure, but no attributes or latelg., the number
of neighboring nodes). The essential differenceveeh LD and
LI features is that LD features change as the d&iss assign-
ments in a network change, whereas LI features hiawesame
value regardless of the values of class labels.

3.1 Extracting Label-Independent Features
We consider four LI features on nodes: (1) the nembf
neighboring nodes, (2) the number of incident Ijn83 between-

ness centrality, and (4) clustering coefficientattees 1 and 2,
respectively, are node-based and link-based measirdegree.
Note that in multigraphs, these two are differéBetweenness
centrality measures how “central” a node is in ek, based on
the number of shortest paths that pass througtiustering coef-
ficient measures neighborhood strength, based sndomnected
a node's neighbors are to one another. For detedstefer the
reader to a study by Mark Newman [14].

The success of network-structural characteristicpradictors of
class relies on two assumptions: (1) members &réifit classes
play different roles in a network and (2) theseesotan be differ-
entiated by structural characteristics. Assump#ias met in many
cases. For instance, popular nodes can be idehtifielegree and
"important” nodes can be identified by centralityeasures.
Whether assumption 1 is met depends on the clbet Buppose
that executives tend to be more popular and cetiteal an aver-
age employee in a company’'s communication netwaidk em-

ployees with a particular job title tend to havenitr popularity

and centrality, regardless of department. Thenyweald expect
structural features to be more useful for idemtifyiexecutives
than members of a particular department.

4. EXPERIMENTAL DESIGN

4.1 Classifiers

On each classification task, we ran ten individtlasifiers: four
variations of a link-based classifier [7], four haions of a rela-
tional neighbor classifier [8], and two variatioothe Gaussian
Random Field classifier [18]. We describe eachWwelo

nLB is the network-only link-based classifier [7].uses logistic
regression to model a node's class given the ofaseighboring
nodes. A node's neighborhood is summarized by vieighted
counts of neighboring nodes for each class.

nLBLI is composed of two logistic regression models: (LB
and (2) logLl, which uses the four LI features. THeBLI classi-
fier calculates the probability of each class as:

P(C)=wP,,(C)+(-w)R,,, (C) (1)

wherew is calculated based on the individual performarfaelB

and logLIl over 10-fold cross validation on the niag data. We
calculate area under the ROC curve (AUC) for eatth dnd then
obtain an average AUC score for each classifierCAjJand AU-
C.,. We then set w as follows:

w= & (2)
AUC,, + AUC,

nLB+ICA uses the nLB classifier, but performs collectilessi-
fication using the ICA algorithm described in Senté4.2.

nLBLI+ICA uses the nLBLI classifier, but performs collective
classification using the ICA algorithm describedSection 4.2.

wWVRN is the weighted-vote relational neighbor classif§. It is

a simple non-learning classifier. Given a nddand a set of
neighboring nodesdy, the wvRN classifier calculates the probabil-
ity of each class for nodeas:

p(C =cIN)= Ly Wi TG =c ©)
' L; 5 Ootherwise



wherew;; is the number of links between nodesndj andl; is
the number of links connecting noddo labeled nodes. When
nodei has no labeled neighbors, we use the prior préibebi
observed in the training data.

WVRNLI combines the LI features with wwRN in the same way
that nLBLI does with nLB.

WVRN+ICA uses the wvRN classifier, but performs collective
classification using the ICA algorithm describedSiection 4.2.

WVRNLI+ICA uses wvRNLlI, but performs collective classifica-
tion using the ICA algorithm described in Sectio®.4

GRF is the semi-supervised Gaussian Random Field approf
Zhu et al. [18]. We made one modification to accardate dis-
connected graphs. Zhu computes the graph Laplasian= D —
cW, wherec=1. We set=0.9 to ensure thdt is diagonally domi-
nant and thus invertible. We observed no substaimtipact on
performance in connected graphs due to this change.

GRFLI combines the LI features with GRF as nLBLI doethwi
nLB. We also tried the approach of Zhu et al. [I8}jach a “don-
gle” node to each unlabeled node and assign ibal lasing the
external LI classifier. The transition probabilftpm nodei to its
dongle isn and all other transitions froimare discounted by I
This approach did not yield any improvements. Se, use the
weighted sum approach (i.e., Equation 1) for cdestsy.

4.2 Collective Classification

To perform collective classification, we use therative classifi-
cation algorithm (ICA) [8], up to 1000 iterationd/le chose ICA
because (1) it is simple, (2) it performs well onaaiety of tasks,
and (3) it tends to converge more quickly than o#gproaches.
We also performed experiments using relaxation liiagpe(RL)
[8]. Our results are consistent with previous reseahowing that
the accuracy of wRN+RL is nearly identical to GR¥et GRF
produces higher AUC values [8]. We omit these tesllie to the
similarity to GRF. For a comparison of wWRN+RL a@G®RF on
several of the same tasks used here, see Gallaghkr4]. Over-
all, ICA slightly outperforms RL for the nLB cladisi.

Several of our data sets have large amounts ofbaldd data
since ground truth is simply not available. There &vo reason-
able approaches to collective classification (C&gh(1) perform
CC over the entire graph and (2) perform CC overdbre set of
nodes only (i.e., nodes with known labels). Applo&coutper-
forms 1 in almost all cases, despite disconnedtiegnetwork in
some cases. Therefore, we report results for apprda

4.3 Experimental Methodology

Each data set has a set of core nodes for whicknew the true

class labels. Several data sets have additionagdsnéamt which

there is no ground truth available. Classifiersehaecess to the
entire graph for both training and testing. Howeves hide labels
for 10% — 90% of the core nodes. Classifiers améd on all

labeled core nodes and evaluated on all unlabeleirodes.

For each proportion labeled we run 30 trials. Fachetrial, we
choose a class-stratified random sample contaibh@iyx (1.0 —
proportion labeled)% of the core nodes as a tdsarsa the re-
maining core nodes as a training set. Note thanglesnode will
necessarily appear in multiple test sets. Howewer,carefully

choose test sets to ensure that each node in aetatacurs in the
same number of test sets over the course of owrienents; and
therefore, carries the same weight in the overaluation. Labels
are kept on training nodes and removed from tedesioWe use
identical train/test splits for each classifier.r Foore on experi-
mental methodologies for relational classificatieee Gallagher
and Eliassi-Rad [3].

We use the area under the ROC curve (AUC) to coenglassifi-
ers because it is more discriminating than accur@ryce most of
our tasks have a large class imbalance (see Tablacturacy
cannot adequately differentiate between classifiers

Table 1: Summary of data sets and prediction tasks.

DataSet [Sample Task VI | IL] | [E] | P(#+)
Political Books Full Neutral? 105 105 | 441| 0.12
Enron Time Executive?| 9K 1.6K50K| 0.02
Reality Mining| BFS Student? 1K 84| 32K 0.62
Reality Mining| BFS In Study? 1K| 1K]| 32K 0.08
HEP-TH BFS | Diff Geometry?3K | 284 | 36K| 0.06
4.4 Data Sets

We present results on four real-world data Setsiitical book
purchases, Enron emails, Reality Mining (RM) céibpe calls,
and physics publications (HEP-TH) from arXiv. Oiveftasks are

to identify neutral political books, Enron execesy Reality Min-

ing students and study participants, and HEP-THemawith the
topic “Differential Geometry.” Table 1 summarizég tprediction
tasks. TheSamplecolumn describes the method used to obtain a
data sample for our experiments: use the entirdfslt), use a
time-slice {ime), or sample a continuous subgraph via breadth-
first search BFS. The Taskcolumn indicates the class label we
try to predict. ThelV|, |L|, and|E| columns indicate counts of
total nodes, labeled nodes, and total edges in eattork. The
P(+) column indicates the proportion of labeled nodett have
the positive class label (e.g., 12% of the politizaoks are neu-
tral). For Enron, Reality Mining student, and HER;Twe have
labels for only a subset of nodes (i.e., the “careties) and can
only train and test our classifiers on these noHesvever, unla-
beled nodes and their connections to labeled nodssstill be
exploited to calculate LI features of the labeledes.

5. EXPERIMENTAL RESULTS
In this section, we discuss our results. We asdesigmificance
using paired t-tests (p-valug9.05 are considered significant).

5.1 Effectsof Learning Label Dependencies

Supervised learning approaches, like nLB, use ¢éabelodes as
training data to build a dependency model overht@iging class
labels. The non-learning wwRN and GRF assume that dabels
of neighbors tend to be the same. GRF performs evethe En-
ron and RM student tasks (Figure 1), which havé hédpel con-
sistency between neighbors. On the RM study tasherev
neighboring labels are inversely correlated, wRN &RF per-
form poorly, whereas nLB can learn the correct depacies.

1 More information is available at: http://www.orgrem/ di-
vided2.html (political books), http://www.cs.cmuwgdenron/
(Enron), http://reality.media.mit.edu/ (Reality Ntg), and
http://kdl.cs.umass.edu/data/hepth/hepth-info.{thE P-TH).



Political Books Political Books Political Books
0.85 0.85 0.85
0.8 4 038 4 038 4
0.75 ~ 0.75 + 0.75 +
anLB OWRN
g 0.7 mnLBLI 0.7 q BWWRNLI 0.7 4
< BnLB+ICA BWWRN+ICA
0.65 - B NLBLI+ICA 0.65 BWWRNLHICA 0.65 1
0.6 0.6 0.6
055 055 0.55
05 05 + 05 +
0.1 03 05 0.7 09 0.1 03 05 0.7 0.9 01 03 05 07 09
Enron Executives Enron Executives Enron Executives
0.9 4 0.9 4 09 4
0.8 08 0.8
onLB OwWRN
8 0.7 1 mnLBLI 0.7 4 WVWWRNLI 0.7 4
< @NLB+ICA @WWRN+ICA
06 mNLBLI+ICA 0.6 1 B WRNLHICA 0.6 H
05 4 05 4 05 H
04 + 0.4 + 0.4 H
0.1 03 05 0.7 0.9 0.1 03 05 0.7 0.9 0.1 03 05 07 09
Reality Mining Students Reality Mining Students Reality Mining Students
0.95 | 0.95 | 0.95 |
0.9 4 0.9 4 0.9 4
0.85 0.85 0.85
0.8 1 anLB 0.8 OwRN 0.8 1
8 mnLBLI BWWRNLI
2 075 BnLB+ICA 075 7 B WRN+CA 0.75 7
07 1 mNLBLI+ICA 0.7 1 B WRNLHICA 0.7 1
0.65 0.65 0.65
0.6 7 0.6 0.6
0.55 + 055 + 0.55 +
0.1 03 05 07 0.9 0.1 03 05 0.7 0.9 0.1 03 05 0.7 0.9
Reality Mining Study Participants Reality Mining Study Participants Reality Mining Study Participants
0.9 0.9
0.8 08
0.7 4 074
0.6 1 onLe OWRN 0.6 1
(9]
S o054 mnLBLI WWWRNLI 05 4
< @nLB+ICA B WWRN+ICA
0.4 1 = nLBLI+ICA = WWRNLHICA 04
03 4 03+
02 4 024
01 4 014
[ [
0.1 03 05 07 0.9 0.1 03 05 07 0.9
HEP-TH HEP-TH HEP-TH
0.85 0.85 0.85
0.8 08 0.8
0.75 0.75 0.75
0.7 onLB 0.7 OwWRN 0.7
(8]
S 065 1 moLeu 065 1 RN 0.65 1
< @nLB+ICA B wWWRN+ICA
0.6 1 ®nLBLI+ICA 0.6 1 B WWRNLIHICA 0.6 1
0.55 055 0.55
05 05 05
0.45 + 045 + 0.45 +
0.1 03 05 07 0.9 0.1 03 05 0.7 0.9 01 03 05 07 09
Proportion of Core Nodes Labeled Proportion of Core Nodes Labeled Proportion of Core Nodes Labeled

Figure 1. Classification results on palitical books, Enron, Reality Mining, and HEP-TH data sets. The classifiersare: nLB, nLBLI,
nLB+ICA, nLBLI+ICA, wRN, wRNLI, wRN+ICA, wRNLI+ICA, GRF, and GRFLI. Results using relaxation labeling (RL) are
omitted. GRF dlightly outperforms wvRN+RL. nLB+ICA dlightly outperforms nLB+RL overall. See Sections 4.1-2 for details.



5.2 Effectsof Label-Independent Features
Figure 1 illustrates several effects of LI featuresgeneral, the
performance of the LI classifiers degrades morgvlgidhan that
of the corresponding base classifiers as fewer sade labeled.
At < 50% labeled, the LI features produce a significargrove-
ment in 36 of 45 cases. The exceptions mainly ofmuGRF on
Enron, RM Student, and HEP-TH, where (in most gaseshave
a statistical tie. In general, the information pded by the LI
features is able to make up, at least in partjrffarmation lost
due to missing labels. Note that there are threarsge effects
that lower performance as the number of labels edsas. (1)
Fewer labels available for inference lead to logeality LD fea-
tures at inference time, but do not impact the igualf LI fea-
tures. (2) Fewer labels at training time mean (ladteled) training
examples have fewer labeled neighbors. This imphetgjuality
of the LD features available at training time ahd guality of the
resulting model. LI features are not affected. E&wer labels
mean less training data. This impacts model quétityboth LD
and LI features. Note that wRN and GRF are afttctely by 1,
since they do not rely on training data.

In general, the LI models outperform the correspogdase
models, leading to significant improvements in 4 of 75 cases
across all proportions of labeled data. There iy @me case
where the use of LI features significantly degrapegormance:
usingGRF on the Enron task at 0.3 labeled. Th6&RF classifier

does so well on this task that the LI features siradd complex-
ity without additional predictive information. Hower, the deg-
radation here is small compared to gains on otskst

Another effect demonstrated in Figure 1 is theradon between
LI features and label propagation (i.e., ICA or GRIR several
cases, combining the two significantly outperforeither on its
own (e.g., GRFLI on political books and the RM &skowever,
the benefit is not consistent across all tasks.

The improved performance due to LI features on re¢vasks at
90% labeled (i.e., political books, both RM tas&sygests that LI
features can provide information above and beybatl provided
by class labels. Political books and RM study &e dnly data
sets fully labeled to begin with. This indicateatthl features may
have more general applicability beyond sparselgli&bdata.

Figure 2 shows the sensitivity of classifiers te #pecific nodes
that are initially labeled. For each classifier aask, we measure
variance in AUC across 30 trials. For each trialifierent 50% of
nodes is labeled. ICA has very little impact on Heasitivity of
nLB to labeling changes. However, the LI featuresrdase the
labeling sensitivity of nLB dramatically for all bone data set.
The results for wwRN are qualitatively similar. fdatures also
decrease sensitivity for GRF in most cases. SinR& Bas low
sensitivity to begin with, the improvements aresldsamatic. The
observed reduction in label sensitivity is not sisipg since LI
features do not rely on class labels. Howeverugigests that LI
features make classifiers more stable. So, eveoases where
average classifier performance does not increaseexpect an
increase in the worst case due to the use of ltlifes.

5.3 Effectsof Specific LI Features

To understand which LI features contribute to thsesved per-
formance gains, we re-ran our experiments usingetstof the LI
features. We used logistic regression with differmbinations

of the four LI features: each alone (4), leave one(4), degree-
based features (1), non-degree-based featureand)all features
(2). This yields 11 classifiers. We present resioit$50% of nodes
labeled. Results for other proportions labeledsarelar.

Figure 3 shows AUC using each LI feature alonealisteatures
together. This demonstrates the utility of eachuieain the ab-
sence of any other information. Figure 4 shows itiseease in
AUC due to adding the specified feature to a clizsghat already
has access to all other LI features. The y-axithés AUC of a
classifier that uses all LI features minus the AbICa classifier
that uses all except the specified feature. Thimaistrates the
power of each feature when combined with the others

All features appear to be useful for some taskssi€ting coeffi-
cient is the least useful overall, improving AUGghktly on two
tasks and degrading AUC slightly on three. Fotasks, a combi-
nation of at least three features yields the bestlts. Interest-
ingly, features that perform poorly on their owmd#e combined
to produce good results. On the RM student taskie nmount,

Lableing Sensitivity
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0.04
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o 0035 B EnronTitle
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Figure 2: Sensitivity of classifiers to specific assignments of

50% known labels across data sets.
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Figure 3: Performance of LI featuresin isolation.
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Figure 4. Performance of LI features in combination. De-
gree-based features are node and link count. Non-degree
features are betweenness and clustering coefficient.



betweenness, and clustering coefficient produce A\WE€0.57,
0.49, and 0.48 alone, respectively. When combitieese three
produce an AUC of 0.78. Betweenness, which perfobelew
random (AUC < 0.5) on its own, provides a boosd.82 AUC to
a classifier using node count and clustering coieffit.

For most tasks, performance improves due to usinfpar LI
features. On Enron, however, clustering coefficiappears to
mislead the classifier to the point where it istéreto use either
node or link count individually than to use allti@@s. This is one
case where we might benefit from a more selectiassdier. Fig-
ure 5 compares logistic regression with a randorastoclassifier
[1], both using the same four LI features. As expecrandom
forest is better able to make use of the inforneafaatures with-
out being misled by the uninformative ones.

Enron Executives

0.8

0.7

% 0.65 @ Logistic
<7 B Rand Forest

0.6 4

0.5 -
0.1 03 05 0.7 0.9

Proportion of Core Nodes Labeled

Figure 5: Comparison of logistic regression and random
forest classifierswith all four LI features.

6. CONCLUSION

We have examined the utility of label-independesttdires in the
context of within-network classification. Our exjeents reveal a
number of interesting findings: (1) LI features aaake up for
large amounts of missing class labels; (2) LI fezgican provide
information above and beyond that provided by claksls alone;
(3) the effectiveness of LI features is due, astiéa part, to their
consistency and their stabilizing effect on netwddssifiers; (4)
no single label-independent feature dominates tlewd is gener-
ally a benefit to combining a few diverse LI featsir Lastly, we
observed a benefit to combining LI features withelapropaga-
tion, although the benefit is not consistent actasks.
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