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ABSTRACT 
We address the problem of within-network classification in 
sparsely labeled networks. Recent work has demonstrated success 
with statistical relational learning (SRL) and semi-supervised 
learning (SSL) on such problems. However, both approaches rely 
on the availability of labeled nodes to infer the values of missing 
labels. When few labels are available, the performance of these 
approaches can degrade. In addition, many such approaches are 
sensitive to the specific set of nodes labeled. So, although average 
performance may be acceptable, the performance on a specific 
task may not. We explore a complimentary approach to within-
network classification, based on the use of label-independent (LI) 
features – i.e., features not influenced by the values of class la-
bels. While previous work has made some use of LI features, the 
effects of these features on classification performance have not 
been extensively studied. Here, we present an empirical study in 
order to better understand these effects. Through experiments on 
several real-world data sets, we show that the use of LI features 
produces classifiers that are less sensitive to specific label assign-
ments and can lead to performance improvements of over 40% for 
both SRL and SSL based classifiers. We also examine the relative 
utility of individual LI features and show that, in many cases, it is 
a combination of a few diverse network-structural characteristics 
that is most informative. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
Mining; I.2.6 [Artificial Intelligence]: Learning; I.5.1 [Pattern 
Recognition]: Models – Statistical; I.5.2 [Pattern Recognition]: 
Design Methodology – Feature evaluation and selection. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Statistical relational learning, semi-supervised learning, social 
network analysis, feature extraction, collective classification. 

1. INTRODUCTION 
In this paper, we address the problem of within-network classifi-
cation. We are given a network in which some of the nodes are 
“labeled” and others are “unlabeled.” Our goal is to assign the 
correct labels to the unlabeled nodes from among a set of possible 
class labels (i.e., to “classify” them). For example, we may wish to 
identify cell phone users as either 'fraudulent' or 'legitimate.' 

Cell phone fraud is an example of an application where networks 
are often very sparsely labeled. We may have a handful of known 
fraudsters and a handful of known legitimate users, but for the 
vast majority of users, we do not know the correct label. For such 
applications, it is reasonable to expect that we may have access to 
labels for fewer than 10%, 5%, or even 1% of the nodes. In addi-
tion, cell phone networks are generally anonymized. That is, 
nodes in these networks often contain no attributes besides class 
labels that could be used to identify them. It is this kind of 
sparsely labeled, anonymized network that is the focus of this 
work. Put another way, our work focuses on univariate within-
network classification in sparsely labeled networks. 

Relational classifiers have been shown to perform well on net-
work classification tasks because of their ability to make use of 
dependencies between class labels (or attributes) of related nodes 
[17]. However, because of their dependence on attributes, the 
performance of relational classifiers can substantially degrade 
when a large proportion of neighboring instances are also unla-
beled. In many cases, collective classification provides a solution 
to this problem, by enabling the simultaneous classification of a 
number of related instances [15]. However, previous work has 
shown that the performance of collective classification can also 
degrade when there are too few labels available, eventually to the 
point where classifiers perform better without it [13]. 

In this paper, we explore another source of information present in 
networks that is independent of the available node labels. Such 
information can be represented using what we call label-
independent (LI) features. The main contribution of this paper is 
an in-depth examination of the effects of label-independent fea-
tures on within-network classification. In particular, we address 
the following questions: 

1. Can LI features make up for a lack of information due to 
sparsely labeled data? Answer: Yes. 

2. Can LI features provide information above and beyond that 
provided by the class labels? Answer: Yes. 

3. How do LI features improve classification performance? An-
swer: Because they are less sensitive to the specific labeling as-
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signed to a graph, classifiers that use label-independent features 
produce more consistent results across prediction tasks. 

4. Which LI features are the most useful? Answer: A combination 
of a few diverse network-structural characteristics (node and link 
counts and betweenness) is the most informative. 

Section 2 covers related work. Section 3 describes our approach 
for modeling label-independent characteristics of networks. Sec-
tions 4 and 5, respectively, present our experimental design and 
results. We conclude the paper in Section 6. 

2. RELATED WORK 
In recent years, there has been a great deal of work on statistical 
relational learning (SRL) [5, 7, 8, 11, 13]. All SRL techniques 
make use of label-dependent relational information. Some use 
label-independent information as well. Relational Probability 
Trees [10] use degree-based features. Singh et al. [16] use struc-
tural properties to prune networks for attribute prediction. Neville 
and Jensen [12] use spectral clustering to group instances based 
on link structure and use these groups in learning classifiers. 

There has also been extensive work on overcoming label sparsity 
through techniques for label propagation. This work falls into two 
research areas: (1) collective classification (CC) [2, 6, 8, 9, 13, 15, 
17] and (2) graph-based semi-supervised learning (SSL) [18, 19]. 
Previous work confirms our observation that the performance of CC 
can suffer when labeled data is very sparse [13]. Other research 
shows that commonly used approaches to collective classification 
and semi-supervised learning are essentially equivalent. In particu-
lar, Macskassy and Provost [8] compare the SSL Gaussian Random 
Field (GRF) model [18] to a SRL weighted-vote relational neighbor 
(wvRN) model that uses relaxation labeling for CC (wvRN+RL) and 
conclude that the two models are nearly identical in terms of accu-
racy, but GRF can produce better probability rankings. Our results 
with wvRN+RL are consistent with this conclusion. The "ghost 
edge" approach of Gallagher et al. [4] combines aspects of both SRL 
and SSL, and compares favorably with both wvRN+RL and GRF. 

3. Label-Dependent vs. Independent Features 
Relational classifiers leverage link structure to improve perform-
ance. Most frequently, links are used to incorporate attribute in-
formation from neighboring nodes. However, link structure can 
also be used to extract structural statistics of a node (e.g., the 
number of adjacent links). We can divide relational features into 
two categories: label-dependent and label-independent. 

Label-dependent (LD) features use both structure and attributes 
(or labels) of nodes in the network. The most commonly used LD 
features are aggregations of the class labels of nodes one link 
away (e.g., the number of neighbors with the class label 'fraudu-
lent'). LD features are the basis for incorporating relational infor-
mation in many SRL classifiers. Label-independent (LI) features 
use network structure, but no attributes or labels (e.g., the number 
of neighboring nodes). The essential difference between LD and 
LI features is that LD features change as the class-label assign-
ments in a network change, whereas LI features have the same 
value regardless of the values of class labels. 

3.1 Extracting Label-Independent Features 
We consider four LI features on nodes: (1) the number of 
neighboring nodes, (2) the number of incident links, (3) between-

ness centrality, and (4) clustering coefficient. Features 1 and 2, 
respectively, are node-based and link-based measures of degree. 
Note that in multigraphs, these two are different. Betweenness 
centrality measures how “central” a node is in a network, based on 
the number of shortest paths that pass through it. Clustering coef-
ficient measures neighborhood strength, based on how connected 
a node's neighbors are to one another. For details, we refer the 
reader to a study by Mark Newman [14]. 

The success of network-structural characteristics as predictors of 
class relies on two assumptions: (1) members of different classes 
play different roles in a network and (2) these roles can be differ-
entiated by structural characteristics. Assumption 2 is met in many 
cases. For instance, popular nodes can be identified by degree and 
"important" nodes can be identified by centrality measures. 
Whether assumption 1 is met depends on the class label. Suppose 
that executives tend to be more popular and central than an aver-
age employee in a company’s communication network and em-
ployees with a particular job title tend to have similar popularity 
and centrality, regardless of department. Then, we would expect 
structural features to be more useful for identifying executives 
than members of a particular department. 

4. EXPERIMENTAL DESIGN 
4.1 Classifiers 
On each classification task, we ran ten individual classifiers: four 
variations of a link-based classifier [7], four variations of a rela-
tional neighbor classifier [8], and two variations of the Gaussian 
Random Field classifier [18]. We describe each below. 

nLB is the network-only link-based classifier [7]. It uses logistic 
regression to model a node's class given the class of neighboring 
nodes. A node's neighborhood is summarized by link-weighted 
counts of neighboring nodes for each class. 

nLBLI is composed of two logistic regression models: (1) nLB 
and (2) logLI, which uses the four LI features. The nLBLI classi-
fier calculates the probability of each class as:  

( ) ( ) ( ) ( )CPwCPwCP logLInLB ⋅−+⋅= 1   (1) 

where w is calculated based on the individual performance of nLB 
and logLI over 10-fold cross validation on the training data. We 
calculate area under the ROC curve (AUC) for each fold and then 
obtain an average AUC score for each classifier, AUCLD and AU-
CLI. We then set w as follows: 
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nLB+ICA uses the nLB classifier, but performs collective classi-
fication using the ICA algorithm described in Section 4.2. 

nLBLI+ICA uses the nLBLI classifier, but performs collective 
classification using the ICA algorithm described in Section 4.2. 

wvRN is the weighted-vote relational neighbor classifier [8]. It is 
a simple non-learning classifier. Given a node i and a set of 
neighboring nodes, N, the wvRN classifier calculates the probabil-
ity of each class for node i as: 
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where wi,j is the number of links between nodes i and j and Lj is 
the number of links connecting node i to labeled nodes. When 
node i has no labeled neighbors, we use the prior probabilities 
observed in the training data. 

wvRNLI combines the LI features with wvRN in the same way 
that nLBLI does with nLB. 

wvRN+ICA uses the wvRN classifier, but performs collective 
classification using the ICA algorithm described in Section 4.2. 

wvRNLI+ICA uses wvRNLI, but performs collective classifica-
tion using the ICA algorithm described in Section 4.2. 

GRF is the semi-supervised Gaussian Random Field approach of 
Zhu et al. [18]. We made one modification to accommodate dis-
connected graphs. Zhu computes the graph Laplacian as L = D – 
cW, where c=1. We set c=0.9 to ensure that L is diagonally domi-
nant and thus invertible. We observed no substantial impact on 
performance in connected graphs due to this change. 

GRFLI combines the LI features with GRF as nLBLI does with 
nLB. We also tried the approach of Zhu et al. [18]: attach a “don-
gle” node to each unlabeled node and assign it a label using the 
external LI classifier. The transition probability from node i to its 
dongle is η and all other transitions from i are discounted by 1–η. 
This approach did not yield any improvements. So, we use the 
weighted sum approach (i.e., Equation 1) for consistency. 

4.2 Collective Classification 
To perform collective classification, we use the iterative classifi-
cation algorithm (ICA) [8], up to 1000 iterations. We chose ICA 
because (1) it is simple, (2) it performs well on a variety of tasks, 
and (3) it tends to converge more quickly than other approaches. 
We also performed experiments using relaxation labeling (RL) 
[8]. Our results are consistent with previous research showing that 
the accuracy of wvRN+RL is nearly identical to GRF, but GRF 
produces higher AUC values [8]. We omit these results due to the 
similarity to GRF. For a comparison of wvRN+RL and GRF on 
several of the same tasks used here, see Gallagher et al. [4]. Over-
all, ICA slightly outperforms RL for the nLB classifier. 

Several of our data sets have large amounts of unlabeled data 
since ground truth is simply not available. There are two reason-
able approaches to collective classification (CC) here: (1) perform 
CC over the entire graph and (2) perform CC over the core set of 
nodes only (i.e., nodes with known labels). Approach 2 outper-
forms 1 in almost all cases, despite disconnecting the network in 
some cases. Therefore, we report results for approach 2. 

4.3 Experimental Methodology 
Each data set has a set of core nodes for which we know the true 
class labels. Several data sets have additional nodes for which 
there is no ground truth available. Classifiers have access to the 
entire graph for both training and testing. However, we hide labels 
for 10% – 90% of the core nodes. Classifiers are trained on all 
labeled core nodes and evaluated on all unlabeled core nodes. 

For each proportion labeled we run 30 trials. For each trial, we 
choose a class-stratified random sample containing 100 × (1.0 – 
proportion labeled)% of the core nodes as a test set and the re-
maining core nodes as a training set. Note that a single node will 
necessarily appear in multiple test sets. However, we carefully 

choose test sets to ensure that each node in a data set occurs in the 
same number of test sets over the course of our experiments; and 
therefore, carries the same weight in the overall evaluation. Labels 
are kept on training nodes and removed from test nodes. We use 
identical train/test splits for each classifier. For more on experi-
mental methodologies for relational classification, see Gallagher 
and Eliassi-Rad [3]. 

We use the area under the ROC curve (AUC) to compare classifi-
ers because it is more discriminating than accuracy. Since most of 
our tasks have a large class imbalance (see Table 1), accuracy 
cannot adequately differentiate between classifiers. 

Table 1: Summary of data sets and prediction tasks. 

Data Set Sample Task |V| |L| |E| P(+) 
Political Books Full Neutral? 105 105 441 0.12 

Enron Time Executive? 9K 1.6K 50K 0.02 
Reality Mining BFS Student? 1K 84 32K 0.62 
Reality Mining BFS In Study? 1K 1K 32K 0.08 

HEP-TH BFS Diff Geometry? 3K 284 36K 0.06 

4.4 Data Sets 
We present results on four real-world data sets:1 political book 
purchases, Enron emails, Reality Mining (RM) cell phone calls, 
and physics publications (HEP-TH) from arXiv. Our five tasks are 
to identify neutral political books, Enron executives, Reality Min-
ing students and study participants, and HEP-TH papers with the 
topic “Differential Geometry.” Table 1 summarizes the prediction 
tasks. The Sample column describes the method used to obtain a 
data sample for our experiments: use the entire set (full), use a 
time-slice (time), or sample a continuous subgraph via breadth-
first search (BFS). The Task column indicates the class label we 
try to predict. The |V|, |L|, and |E| columns indicate counts of 
total nodes, labeled nodes, and total edges in each network. The 
P(+) column indicates the proportion of labeled nodes that have 
the positive class label (e.g., 12% of the political books are neu-
tral). For Enron, Reality Mining student, and HEP-TH, we have 
labels for only a subset of nodes (i.e., the “core” nodes) and can 
only train and test our classifiers on these nodes. However, unla-
beled nodes and their connections to labeled nodes may still be 
exploited to calculate LI features of the labeled nodes. 

5. EXPERIMENTAL RESULTS 
In this section, we discuss our results. We assessed significance 
using paired t-tests (p-values ≤ 0.05 are considered significant). 

5.1 Effects of Learning Label Dependencies 
Supervised learning approaches, like nLB, use labeled nodes as 
training data to build a dependency model over neighboring class 
labels. The non-learning wvRN and GRF assume that class labels 
of neighbors tend to be the same. GRF performs well on the En-
ron and RM student tasks (Figure 1), which have high label con-
sistency between neighbors. On the RM study task, where 
neighboring labels are inversely correlated, wvRN and GRF per-
form poorly, whereas nLB can learn the correct dependencies. 

                                                                 
1 More information is available at: http://www.orgnet.com/ di-

vided2.html (political books), http://www.cs.cmu.edu/~enron/ 
(Enron), http://reality.media.mit.edu/ (Reality Mining), and 
http://kdl.cs.umass.edu/data/hepth/hepth-info.html (HEP-TH). 



 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Classification results on political books, Enron, Reality Mining, and HEP-TH data sets. The classifiers are: nLB, nLBLI, 
nLB+ICA, nLBLI+ICA, wvRN, wvRNLI, wvRN+ICA, wvRNLI+ICA, GRF, and GRFLI. Results using relaxation labeling (RL) are 
omitted. GRF slightly outperforms wvRN+RL. nLB+ICA slightly outperforms nLB+RL overall. See Sections 4.1-2 for details. 
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5.2 Effects of Label-Independent Features 
Figure 1 illustrates several effects of LI features. In general, the 
performance of the LI classifiers degrades more slowly than that 
of the corresponding base classifiers as fewer nodes are labeled. 
At ≤ 50% labeled, the LI features produce a significant improve-
ment in 36 of 45 cases. The exceptions mainly occur for GRF on 
Enron, RM Student, and HEP-TH, where (in most cases) we have 
a statistical tie. In general, the information provided by the LI 
features is able to make up, at least in part, for information lost 
due to missing labels. Note that there are three separate effects 
that lower performance as the number of labels decreases. (1) 
Fewer labels available for inference lead to lower quality LD fea-
tures at inference time, but do not impact the quality of LI fea-
tures. (2) Fewer labels at training time mean that (labeled) training 
examples have fewer labeled neighbors. This impacts the quality 
of the LD features available at training time and the quality of the 
resulting model. LI features are not affected. (3) Fewer labels 
mean less training data. This impacts model quality for both LD 
and LI features. Note that wvRN and GRF are affected only by 1, 
since they do not rely on training data. 

In general, the LI models outperform the corresponding base 
models, leading to significant improvements in 49 out of 75 cases 
across all proportions of labeled data. There is only one case 
where the use of LI features significantly degrades performance: 
using GRF on the Enron task at ≤ 0.3 labeled. The GRF classifier 
does so well on this task that the LI features simply add complex-
ity without additional predictive information. However, the deg-
radation here is small compared to gains on other tasks. 

Another effect demonstrated in Figure 1 is the interaction between 
LI features and label propagation (i.e., ICA or GRF). In several 
cases, combining the two significantly outperforms either on its 
own (e.g., GRFLI on political books and the RM tasks). However, 
the benefit is not consistent across all tasks. 

The improved performance due to LI features on several tasks at 
90% labeled (i.e., political books, both RM tasks) suggests that LI 
features can provide information above and beyond that provided 
by class labels. Political books and RM study are the only data 
sets fully labeled to begin with. This indicates that LI features may 
have more general applicability beyond sparsely labeled data. 

Figure 2 shows the sensitivity of classifiers to the specific nodes 
that are initially labeled. For each classifier and task, we measure 
variance in AUC across 30 trials. For each trial, a different 50% of 
nodes is labeled. ICA has very little impact on the sensitivity of 
nLB to labeling changes. However, the LI features decrease the 
labeling sensitivity of nLB dramatically for all but one data set. 
The results for wvRN are qualitatively similar. LI features also 
decrease sensitivity for GRF in most cases. Since GRF has low 
sensitivity to begin with, the improvements are less dramatic. The 
observed reduction in label sensitivity is not surprising since LI 
features do not rely on class labels. However, it suggests that LI 
features make classifiers more stable. So, even in cases where 
average classifier performance does not increase, we expect an 
increase in the worst case due to the use of LI features. 

5.3 Effects of Specific LI Features 
To understand which LI features contribute to the observed per-
formance gains, we re-ran our experiments using subsets of the LI 
features. We used logistic regression with different combinations 

of the four LI features: each alone (4), leave one out (4), degree-
based features (1), non-degree-based features (1), and all features 
(1). This yields 11 classifiers. We present results for 50% of nodes 
labeled. Results for other proportions labeled are similar. 

Figure 3 shows AUC using each LI feature alone vs. all features 
together. This demonstrates the utility of each feature in the ab-
sence of any other information. Figure 4 shows the increase in 
AUC due to adding the specified feature to a classifier that already 
has access to all other LI features. The y-axis is the AUC of a 
classifier that uses all LI features minus the AUC of a classifier 
that uses all except the specified feature. This demonstrates the 
power of each feature when combined with the others. 

All features appear to be useful for some tasks. Clustering coeffi-
cient is the least useful overall, improving AUC slightly on two 
tasks and degrading AUC slightly on three. For all tasks, a combi-
nation of at least three features yields the best results. Interest-
ingly, features that perform poorly on their own can be combined 
to produce good results. On the RM student task, node count, 
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Figure 2: Sensitivity of classifiers to specific assignments of 
50% known labels across data sets. 
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Figure 3: Performance of LI features in isolation. 
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Figure 4: Performance of LI features in combination. De-
gree-based features are node and link count. Non-degree 
features are betweenness and clustering coefficient. 



betweenness, and clustering coefficient produce AUCs of 0.57, 
0.49, and 0.48 alone, respectively. When combined, these three 
produce an AUC of 0.78. Betweenness, which performs below 
random (AUC < 0.5) on its own, provides a boost of 0.32 AUC to 
a classifier using node count and clustering coefficient. 

For most tasks, performance improves due to using all four LI 
features. On Enron, however, clustering coefficient appears to 
mislead the classifier to the point where it is better to use either 
node or link count individually than to use all features. This is one 
case where we might benefit from a more selective classifier. Fig-
ure 5 compares logistic regression with a random forest classifier 
[1], both using the same four LI features. As expected, random 
forest is better able to make use of the informative features with-
out being misled by the uninformative ones. 

Enron Executives

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.1 0.3 0.5 0.7 0.9

Proportion of Core Nodes Labeled

A
U

C Logistic

Rand Forest

 
Figure 5: Comparison of logistic regression and random 
forest classifiers with all four LI features. 

6. CONCLUSION 
We have examined the utility of label-independent features in the 
context of within-network classification. Our experiments reveal a 
number of interesting findings: (1) LI features can make up for 
large amounts of missing class labels; (2) LI features can provide 
information above and beyond that provided by class labels alone; 
(3) the effectiveness of LI features is due, at least in part, to their 
consistency and their stabilizing effect on network classifiers; (4) 
no single label-independent feature dominates, and there is gener-
ally a benefit to combining a few diverse LI features. Lastly, we 
observed a benefit to combining LI features with label propaga-
tion, although the benefit is not consistent across tasks. 
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