Ranking Information in Networks

Tina Eliassi-Rad and Keith Hendersdn

1 Rutgers Universityt(i na@! i assi . or g)
2 Lawrence Livermore National Laboratorkdi t h@ | nl . gov)

Abstract. Given a network, we are interested in ranking sets of nodessttore
highest on user-specified criteria. For instance in grapim bibliographic data
(e.g. PubMed), we would like to discover sets of authors eigpertise in a wide
range of disciplines. We present this ranking task d®p@K problem; utilize
fixed-memory heuristic search; and present performancetr the serial and
distributed search algorithms on synthetic and real-wdalth sets.
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1 Introduction

Given a graph, we would like to rank sets of nodes that scaedsit on user-specified
criteria. Examples include (1) finding sets of patents whildlemoved, would have the
greatest effect on the patent citation network; (2) idgmi small sets of IP addresses
which taken together account for a significant portion of gidgl day’s traffic; and
(3) detecting sets of countries whose vote agree with a gieemtry (e.g., USA) on
a wide range of UN resolutions. We present this ranking task @op-K problem.
We assume the criteria is defined byreal-valued features on nodes. This gives us a
matrix F', whose rows represent tiié nodes and whose columns representithreal-
valued features. Examples of these node-centric featnchsde degree, betweenness,
PageRank, etc. We define &rtuple(vy, ..., vz ) as a selection of one value from each
column. The score of af-tuple is equal to the sum of the selected values (i.e., sum
of the tuple’s components). For a given parameéterwe require an algorithm that
efficiently lists the topK L-tuples ordered from best (highest score) to worst. The
tuple with the highest score corresponds to a set of nodesiichvall features take on
optimal values.

As described in the next section, we solve the Top-K problgmtbizing SMA*
[4], which is a fixed-memory heuristic search algorithm. SMAquires the specifica-
tion of an additional parametér for the maximum allotted memory-size. The choice
for M has a dramatic effect on runtime. To solve this inefficienoybfem, we in-
troduce a parallelization of SMA* (on distributed-memoryachines) that increases
the effective memory size and produces super-linear spsedinis allows use to effi-
ciently solve the Top-K ranking problem for lardeand K (e.g.,L € [102,10%] and
K € [10%,10°]). Experiments on synthetic and real data illustrate thectiffeness of
our solution.
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2 A Serial Solution tothe Top-K Ranking Problem

Given F', a matrix of L. columns of real-valued features ov&rrows of vertices, and
an integerk’, our application of SMA* will report the tog< scoringL-tuples that can
be selected frond". First, we take each column of matrix and represent it as its own
vector. This produces a lis€ containingl vectors (of sizeV x 1). We sort each vector
in X in decreasing order. Then, we begin constructihganother list of.. vectors of
real numbers. Each vectdr; has|X;| — 1 entries, wherd;; = X;; — Xi(j+1)- Note
that the values in each; are all nonnegative real numbers; aldis unsorted.

The top-scoringL-tuple, R,, can immediately be reported; it is simply the tuple
generated by selecting the first element in eAghAt this point, the problem can be
divided into two subproblems whose structure is identiocaht original problem (i.e.
another instance of the Top-K problem). While there are sdy®ssible ways to make
this division, we choose one that allows us to search effilgidn particular, we choose
the vector which would incur the least cost when its best etgns discarded.This
can be determined by choosing the vedtaith the minimumbD;;. Given this index,
we generate two subproblems as follows. In the first subprmpive discard the best
element in vectorX;. The resulting list of vectors will be called'. In the second
subproblem, we keep the best element in veaipand remove all other elements from
vectorX;. The resulting list of vectors here will be calléd’.

Let'sillustrate this procedure with an example. Supp¥se{[10,8,5,2,1],[4,3,2,1],
[30,25,24,23,22); so, D = {[2,3,3,1], [1,1,1], [5,1,1,1]. (Recall that we assume lists
in X are already sorted in decreasing order and some entagbermissing.) The top-
scoringL-tuple isR; = (10, 4, 30) with score(R;)=10+4+30=44. Starting fronX , the
next best tuple can be generated by selecting thé Wéth the smallest);; and decre-
mentingX; in X: X! ={[10,8,5,2,1],[3,2,1],[30,25,24,23,22]D* = {[2,3,3,1], [1,1],
[5,1,1,1]}, andscore( X !)=10+3+30=43. At this point, we can split the problem into
two smaller problems. We can either “accept” the best deentiX ! above) or “reject”
the best decrement and all future chances to decremenisthaf? = {[10,8,5,2,1], [4],
[30,25,24,23,22), D° ={[2,3,3,1],[1, [5,1,1,1}, andscore( X ?)=10+4+30=44. In this
way, we can generat&!!, X0 X0l etc. This defines a binary tree structure in which
each node has two children. Each series of superscriptedefinniquel-tuple) node.

Our procedure for generating subproblems has three imuigtaperties. First, ev-
ery L-tuple generated fronX is eitherR;, from X, or from X°. Second, nd.-tuple
generated fromX! or X° has a score greater thanore(R; ). Third, the top-scoring
L-tuple fromX° has the same score &s.

Given this formulation, a recursive solution to the Top-Klplem is theoretically
possible. In the base case, the input i§thas L vectors of length one, and there is
only one possiblel-tuple to report (namelyR;). Given arbitrary length vectors in
X, we can divide the problem as above and merge the resultait tlists with Ry,
discarding all but the tog< elements of the merged list. This method, however, is
impractical since each of the lists returned by the recarsalls could contain as many
as K elements; hence, violating the requirement that space lexityp mustnot be

% If all vectors inX contain exactly one element, no subproblems can be gedetatiis case,
the Top-K problem is trivial.
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O(K). But, a search-based approach allows us to generate th& tojples one at a
time. If we treat each Top-K instance as a node, and each cblepn generated from
an instance as a child of that node, then we can treat the TopBlem as search in
a binary tree. The cost of traversing an edge is equal to $®itoscore incurred by
removing elements fronX ; thus theX° edge always has cos8tand theX' edge has
cost equal tdhestDif f(X) =g4ey min(D;i|i = 1---L). In this context, A* search
[3] clearly generates subproblems in order of thejiscores. For the heuristic function
h(n), we usebestDif f(X), which can be readily computed. Note thattDif f is
monotone (and thus admissible) by the following argurdhip is a 1-child ofn (the
X1 subproblem), theh(n) = cost(n,p) andh(p) > 0. Otherwisecost(n, p) = 0 and
h(n) < h(p) by the definition obestDif f.

Unfortunately, A* search requires storage of i@ E'N list in memory, and the
size of OPEN increases with every node expansion. This violates our mgme
quirements (of less thaf (k) storage), so we employ SMA* search [5] which stores
a maximum ofM nodes in memory at any given time during the execution. SM&* e
pands nodes in the same order as A* until it runs out of men#drghat point, the least
promising node is deleted and ifsvalue is backed up in its parehBMA* is guaran-
teed to generate the same nodes as A* and in the same ordezveigit may generate
some intermediate nodes multiple times as it “forgets” arediembers” portions of the
tree. In certain cases, especially when the paranmiétexr small compared to the size of
the search fringe, SMA* can experience “thrashing.” Thim#fing results from large
parts of the search tree being generated and forgotten withfew new nodes being
discovered. Our serial Top-K algorithm is essentially thme as SMA* [5] except for
the use of heaps in selecting which of thig vectors to decrement at each node.

3 A Paralld Solution to the Top-K Ranking Problem

The aforementioned serial algorithm is very sensitive &doice of\/, the maximum
amount of memory that can be allocated (see the Experiment®8). Here we present
a parallel SMA* algorithm that offers dramatic improvementuntime.

For a machine withP processing nodes, we use A* search to generat&#iebest
candidate subproblems. This covers the entire searchBemmause each subproblem
is independent of the others, each processing node canrpeEMA* search on its
subproblem and incrementally report results to the mastegssing node, where the
incoming tuple lists are merged and results are reported.

For small P, this algorithm works as expected and produces superrlspsedup.
However asP increases, the performance boost can decrease quicklyo€burs be-
cause the runtime for this parallel algorithm is dominatgthe single processing node
with the longest runtime. If the initial allocation of sulpimems to processing nodes
is imbalanced, additional processing nodes may not impparéormance at all. To
ameliorate this problem, we adopt a load-balancing hecirist

* Recall that a heuristic functiol(n) is monotone ifh(n) < cost(n, p) + h(p) for all nodesn
and all successogsof n.

5 The functionf represents the total cost function, which equals the suimesdost encountered
so far and the estimated cost.
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We run parallel SMA* on the input data with” < K as the threshold parameter.
We then use the relative load from each subproblem as anastofithe total work that
will have to be done to solve that subproblem. We use theseasss to redistribute the
initial nodes and repeat until there are no changes in thilirillocation of nodes.
This distribution is then used to generate the fopL-tuples as described above. In
our experiments, this heuristic correctly balanced theldoan the processing nodes.
Moreover, the initial overhead to calculate the estimatas anegligible fraction of the
overall runtime.

4 Experiments

4.1 Synthetic Data: Results and Discussion

To determine the runtime requirements for our Top-K aldnit we generated a syn-
thetic data set with, = 100 lists. Each list has between one and ten real values dis-
tributed uniformly in[0, 1]. Figure 1 shows runtime results far = 10° nodes in
memory. Note that a&’ increases, time complexity ik becomes near-linear. How-
ever, at approximately 20,000 tuples per second it is stillglow to be practical for
large values ofx.

Figures 2(a), 2(b), and 2(c) show the performance metrica &rong scaling ex-
periment with the parallel algorithmuntime speedupefficiency Runtime is the wall-
clock runtime. Speedup is defined as the time taken to exesutme processi{)
divided by the time taken to execute é¢hprocessesI(,). Linear speedup is the ideal
case where 2 processes take half the time, 3 processes taikeé aftthe time, and so
forth. Efficiency is defined as speedup divided by the numb@racessors. Ideal ef-
ficiency is always 1, and anything above 1 is super-linedua#less than 1 indicate
diminishing returns as more processors are added.

For the parallel Top-K experiments, we use the same 100dessribed above but
with M = 10°, K = 2-10%, andK’ = 10%. There is no I/O time in these experiments, as
tuples are simply discarded once they are discovered. Natétte runtime fo? = 2 is
the same as the serial runtime plus overhead because imf@®oe processing node is
the master and simply “merges” the results from the compode nWe see super-linear
speedup for values @? up to 17 processes. However, the runtimefo«= 17 is nearly
identical to the runtime foP = 9. This is because in thB = 17 experiment, one of the
large subproblems is not correctly split and redistribukégure 2(d) reveals the cause.
When P > 9, the subproblems are not being correctly distributed antbaghodes.
Figure 3(d) shows the same results for the load-balancesioveof the algorithm. In
this case, it is clear that the nodes are being correctlyiliiged.

Figures 3(a), 3(b), and 3(c) show the parallel efficiencultsgor the load-balanced
case. Our load-balancing heuristic drastically improvedggmance as the number
of processors increases. These results include the timgre€elfo calculate the load-
balance estimates, which explains the slightly longerinues atP < 9.

4.2 Real Data: Results and Discussion

We tested our Top-K algorithm on four real-world data setamely, patent citations,
DBLP bibliographic data, IP traffic, and UN voting. For brigyiwe only discuss two
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of them here. First, our patents data set is a collection (fHBpatents from the U.S.
Patent Database (subcategory 33: biomedical drugs anccimediThe goal here is to
discover sets of patents which, if removed, would have tleatgst effect on the patent
citation network. In particular, we are interested in p&tewmhich are frequently mem-
bers of such sets; and we want to find which centrality meastoerespond to these
frequent nodes in the citation network. We generated ai@itatetwork with 23,990
nodes and 67,484 links; then calculated four centralityriceebn each node: degree,
betweenness centrality, random walk with restart scoreRRVEnd PageRank. In the
Top-K framework, there are 4 vectors: one for each cenyraliéasure. The indices into
the vectors are patents. The enitim vectorj is the (normalized) centrality scojdor
patenti. Table 1 lists the patents with the highest frequency indpeltO0OK tuples. As
expected, the patents associated with DNA sequencing havkighest frequencies.
Table 2 presents the centrality scores for the patentsllist€able 1. As it can be seen,
the centrality scores alone could not have found these yigipacting patents (since
no patent dominates all four centrality scores).

Our second data set is composed of 4943 proposed UN reswytiotes from
85 countries per resolution (yes, no, abstain, etc), and tatgories. Each proposed
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2]

]

Patent Frequency Patent Title
Number(in Top-100K Tuples
4683194 0.799022 Process for amplifying, detecting, and/or-cloning nuckiid sequence
4683202 0.713693 Process for amplifying nucleic acid sequences
4168144 0.202558 Immunoassay with test strip having antibodies bound...
4066517 0.175828 Biologically active membrane material
5939257 0.133269 Detachable-element assay device
5874216 0.133239 Indirect label assay device for detecting small molecules .
5939307 0.103829 Strains of Escherichia coli, methods of preparing the samdeuae ...
4134792 0.084579 Specific binding assay with an enzyme modulator as a labslibgtanc
4237224 0.074189 Process for producing biologically functional moleculaimeras
4358534 0.02674 Specific DNA probes in diagnostic microbiology

Table 1. Patents with the highest frequency in the top-100K tuples

Patent#|Degre¢Betweenned®RWR[PageRank

4683195 1.000 0.433 |0.030 1.000

4683207 0.974 0.234 |0.000 0.975

4168146 0.099 1.000 |0.1327 0.088

4066512 0.036 0.845 |0.185 0.026

5939252 0.221 0.234 |1.000; 0.000

5874216 0.122| 0.234 |1.000] 0.000

5939307 0.071 0.234 |0.965 0.000

4134792 0.126 0.772 |0.040 0.118

4237224 0.341| 0.760 ]0.019 0.332

4358533 0.460 0.670 |0.064 0.446

Table 2. Centrality scores for the 10 highest-frequency patentlertiap-100K tuples

resolutions is assigned to one or more categories (with arage of 1.6 categories per
proposal). We select the most frequent 20 categories. Werscore each country in
each category by how often it agrees (or disagrees) with & Ubte in that category:

% points per agreement, whereis the number of agreements per proposed resolution.
The input to our topK algorithm then is a matri¥’ with 85 rows (one per country) and
20 columns (one for each selected category). The entribésimtatrix are the weighted
agreement scores. We g€t(in the top4) to 100, 000. We repeat the experiment with
scores for disagreements. Figures 4(a) and 4(b) depicatieng results.

5 Reated Work

Previous studies of the Top-K problem focus on cases whé&esmall (2 or 3) and each
list is very long. Fredman ([2]) studies the problem of s@tX + Y = {x + ylz €
X,y € Y} in better tharO(n? - log(n)) time (whereg| X| = |Y'| = n). Frederickson
and Johnson ([1]) examine the slightly easier problem afalisring thek *" element
of X + Y in O(n - log(n)) time. They also consider the problem of finding thié”
elementofy ", X;, proving that a polynomial algorithm im for arbitrarym < n and
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K would imply that? = N P. Our approach uses fixed-memory heuristic search to
enumeratd.-tuples. It hag)(n - log(n)) runtime and at mosP(K) storage.

6 Conclusions

We demonstrated that ranking sets of nodes in a network caxjressed in terms of
the Top-K problem. Moreover, we showed that this problemlmasolved efficiently
using fixed memory by converting the problem into a binaryae#ee and applying
SMA* search. We also parallelized SMA* for the Top-K problémorder to achieve
super-linear speedup in a distributed-memory environnhexstly we validated our ap-
proach through experiments on both synthetic and real étda s
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