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Abstract. Given a network, we are interested in ranking sets of nodes that score
highest on user-specified criteria. For instance in graphs from bibliographic data
(e.g. PubMed), we would like to discover sets of authors withexpertise in a wide
range of disciplines. We present this ranking task as aTop-K problem; utilize
fixed-memory heuristic search; and present performance of both the serial and
distributed search algorithms on synthetic and real-worlddata sets.

Keywords: Ranking, social networks, heuristic search, distributed search.

1 Introduction

Given a graph, we would like to rank sets of nodes that score highest on user-specified
criteria. Examples include (1) finding sets of patents which, if removed, would have the
greatest effect on the patent citation network; (2) identifying small sets of IP addresses
which taken together account for a significant portion of a typical day’s traffic; and
(3) detecting sets of countries whose vote agree with a givencountry (e.g., USA) on
a wide range of UN resolutions. We present this ranking task as a Top-K problem.
We assume the criteria is defined byL real-valued features on nodes. This gives us a
matrixF , whose rows represent theN nodes and whose columns represent theL real-
valued features. Examples of these node-centric features include degree, betweenness,
PageRank, etc. We define anL-tuple〈v1, . . . , vL〉 as a selection of one value from each
column. The score of anL-tuple is equal to the sum of the selected values (i.e., sum
of the tuple’s components). For a given parameterK, we require an algorithm that
efficiently lists the topK L-tuples ordered from best (highest score) to worst. TheL-
tuple with the highest score corresponds to a set of nodes in which all features take on
optimal values.

As described in the next section, we solve the Top-K problem by utilizing SMA*
[4], which is a fixed-memory heuristic search algorithm. SMA* requires the specifica-
tion of an additional parameterM for the maximum allotted memory-size. The choice
for M has a dramatic effect on runtime. To solve this inefficiency problem, we in-
troduce a parallelization of SMA* (on distributed-memory machines) that increases
the effective memory size and produces super-linear speedups. This allows use to effi-
ciently solve the Top-K ranking problem for largeL andK (e.g.,L ∈ [102, 103] and
K ∈ [106, 109]). Experiments on synthetic and real data illustrate the effectiveness of
our solution.
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2 A Serial Solution to the Top-K Ranking Problem

GivenF , a matrix ofL columns of real-valued features overN rows of vertices, and
an integerK, our application of SMA* will report the topK scoringL-tuples that can
be selected fromF . First, we take each column of matrixF and represent it as its own
vector. This produces a listX containingL vectors (of sizeN ×1). We sort each vector
in X in decreasing order. Then, we begin constructingD, another list ofL vectors of
real numbers. Each vectorDi has|Xi| − 1 entries, whereDij = Xij −Xi(j+1). Note
that the values in eachDi are all nonnegative real numbers; andDi is unsorted.

The top-scoringL-tuple,R1, can immediately be reported; it is simply the tuple
generated by selecting the first element in eachXi. At this point, the problem can be
divided into two subproblems whose structure is identical to the original problem (i.e.
another instance of the Top-K problem). While there are several possible ways to make
this division, we choose one that allows us to search efficiently. In particular, we choose
the vector which would incur the least cost when its best element is discarded.3 This
can be determined by choosing the vectori with the minimumDi1. Given this indexi,
we generate two subproblems as follows. In the first subproblem, we discard the best
element in vectorXi. The resulting list of vectors will be calledX1. In the second
subproblem, we keep the best element in vectorXi and remove all other elements from
vectorXi. The resulting list of vectors here will be calledX0.

Let’s illustrate this procedure with an example. SupposeX = {[10,8,5,2,1], [4,3,2,1],
[30,25,24,23,22]}; so,D = {[2,3,3,1], [1,1,1], [5,1,1,1]}. (Recall that we assume lists
in X are already sorted in decreasing order and some entries maybe missing.) The top-
scoringL-tuple isR1 = 〈10, 4, 30〉with score(R1)=10+4+30=44. Starting fromX , the
next best tuple can be generated by selecting the listi with the smallestDi1 and decre-
mentingXi in X :X1 = {[10,8,5,2,1], [3,2,1], [30,25,24,23,22]},D1 = {[2,3,3,1], [1,1],
[5,1,1,1]}, andscore(X1)=10+3+30=43. At this point, we can split the problem into
two smaller problems. We can either “accept” the best decrement (X1 above) or “reject”
the best decrement and all future chances to decrement that list:X0 = {[10,8,5,2,1], [4],
[30,25,24,23,22]},D0 = {[2,3,3,1], [], [5,1,1,1]}, andscore(X0)=10+4+30=44. In this
way, we can generateX11, X10, X01, etc. This defines a binary tree structure in which
each node has two children. Each series of superscripts defines a unique (L-tuple) node.

Our procedure for generating subproblems has three important properties. First, ev-
eryL-tuple generated fromX is eitherR1, fromX1, or fromX0. Second, noL-tuple
generated fromX1 or X0 has a score greater thanscore(R1). Third, the top-scoring
L-tuple fromX0 has the same score asR1.

Given this formulation, a recursive solution to the Top-K problem is theoretically
possible. In the base case, the input listX hasL vectors of length one, and there is
only one possibleL-tuple to report (namely,R1). Given arbitrary length vectors in
X , we can divide the problem as above and merge the resultant top-K lists with R1,
discarding all but the topK elements of the merged list. This method, however, is
impractical since each of the lists returned by the recursive calls could contain as many
asK elements; hence, violating the requirement that space complexity must not be

3 If all vectors inX contain exactly one element, no subproblems can be generated. In this case,
the Top-K problem is trivial.
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O(K). But, a search-based approach allows us to generate the topK tuples one at a
time. If we treat each Top-K instance as a node, and each subproblem generated from
an instance as a child of that node, then we can treat the Top-Kproblem as search in
a binary tree. The cost of traversing an edge is equal to the loss in score incurred by
removing elements fromX ; thus theX0 edge always has cost0 and theX1 edge has
cost equal tobestDiff(X) =def min(Di1|i = 1 · · ·L). In this context, A* search
[3] clearly generates subproblems in order of theirRi scores. For the heuristic function
h(n), we usebestDiff(X), which can be readily computed. Note thatbestDiff is
monotone (and thus admissible) by the following argument:4 If p is a 1-child ofn (the
X1 subproblem), thenh(n) = cost(n, p) andh(p) ≥ 0. Otherwise,cost(n, p) = 0 and
h(n) ≤ h(p) by the definition ofbestDiff .

Unfortunately, A* search requires storage of theOPEN list in memory, and the
size ofOPEN increases with every node expansion. This violates our memory re-
quirements (of less thanO(K) storage), so we employ SMA* search [5] which stores
a maximum ofM nodes in memory at any given time during the execution. SMA* ex-
pands nodes in the same order as A* until it runs out of memory.At that point, the least
promising node is deleted and itsf -value is backed up in its parent.5 SMA* is guaran-
teed to generate the same nodes as A* and in the same order. However, it may generate
some intermediate nodes multiple times as it “forgets” and “remembers” portions of the
tree. In certain cases, especially when the parameterM is small compared to the size of
the search fringe, SMA* can experience “thrashing.” This thrashing results from large
parts of the search tree being generated and forgotten with very few new nodes being
discovered. Our serial Top-K algorithm is essentially the same as SMA* [5] except for
the use of heaps in selecting which of theXi vectors to decrement at each node.

3 A Parallel Solution to the Top-K Ranking Problem

The aforementioned serial algorithm is very sensitive to the choice ofM , the maximum
amount of memory that can be allocated (see the Experiments Section). Here we present
a parallel SMA* algorithm that offers dramatic improvementin runtime.

For a machine withP processing nodes, we use A* search to generate theP–1 best
candidate subproblems. This covers the entire search tree.Because each subproblem
is independent of the others, each processing node can perform SMA* search on its
subproblem and incrementally report results to the master processing node, where the
incoming tuple lists are merged and results are reported.

For smallP , this algorithm works as expected and produces super-linear speedup.
However asP increases, the performance boost can decrease quickly. This occurs be-
cause the runtime for this parallel algorithm is dominated by the single processing node
with the longest runtime. If the initial allocation of subproblems to processing nodes
is imbalanced, additional processing nodes may not improveperformance at all. To
ameliorate this problem, we adopt a load-balancing heuristic.

4 Recall that a heuristic functionh(n) is monotone ifh(n) ≤ cost(n, p)+ h(p) for all nodesn
and all successorsp of n.

5 The functionf represents the total cost function, which equals the sum of the cost encountered
so far and the estimated cost.
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We run parallel SMA* on the input data withK ′ ≪ K as the threshold parameter.
We then use the relative load from each subproblem as an estimate of the total work that
will have to be done to solve that subproblem. We use these estimates to redistribute the
initial nodes and repeat until there are no changes in the initial allocation of nodes.
This distribution is then used to generate the topK L-tuples as described above. In
our experiments, this heuristic correctly balanced the loads on the processing nodes.
Moreover, the initial overhead to calculate the estimates was a negligible fraction of the
overall runtime.

4 Experiments

4.1 Synthetic Data: Results and Discussion

To determine the runtime requirements for our Top-K algorithm, we generated a syn-
thetic data set withL = 100 lists. Each list has between one and ten real values dis-
tributed uniformly in [0, 1]. Figure 1 shows runtime results forM = 106 nodes in
memory. Note that asK increases, time complexity inK becomes near-linear. How-
ever, at approximately 20,000 tuples per second it is still too slow to be practical for
large values ofK.

Figures 2(a), 2(b), and 2(c) show the performance metrics for a strong scaling ex-
periment with the parallel algorithm:runtime, speedup, efficiency. Runtime is the wall-
clock runtime. Speedup is defined as the time taken to executeon one process (T1)
divided by the time taken to execute onP processes (Tp). Linear speedup is the ideal
case where 2 processes take half the time, 3 processes take a third of the time, and so
forth. Efficiency is defined as speedup divided by the number of processors. Ideal ef-
ficiency is always 1, and anything above 1 is super-linear. Values less than 1 indicate
diminishing returns as more processors are added.

For the parallel Top-K experiments, we use the same 100 listsdescribed above but
with M = 105,K = 2·106, andK ′ = 104. There is no I/O time in these experiments, as
tuples are simply discarded once they are discovered. Note that the runtime forP = 2 is
the same as the serial runtime plus overhead because in this case one processing node is
the master and simply “merges” the results from the compute node. We see super-linear
speedup for values ofP up to 17 processes. However, the runtime forP = 17 is nearly
identical to the runtime forP = 9. This is because in theP = 17 experiment, one of the
large subproblems is not correctly split and redistributed. Figure 2(d) reveals the cause.
WhenP > 9, the subproblems are not being correctly distributed amongthe nodes.
Figure 3(d) shows the same results for the load-balanced version of the algorithm. In
this case, it is clear that the nodes are being correctly distributed.

Figures 3(a), 3(b), and 3(c) show the parallel efficiency results for the load-balanced
case. Our load-balancing heuristic drastically improves performance as the number
of processors increases. These results include the time required to calculate the load-
balance estimates, which explains the slightly longer runtimes atP ≤ 9.

4.2 Real Data: Results and Discussion

We tested our Top-K algorithm on four real-world data sets – namely, patent citations,
DBLP bibliographic data, IP traffic, and UN voting. For brevity, we only discuss two
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Fig. 1. Serial top-K: Runtime as a function ofK
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Fig. 2. Unbalanced parallel top-K:K = 2 · 106, L = 100 lists,M = 105 nodes
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Fig. 3. Balanced parallel top-K:K = 2 · 106, L = 100 lists,M = 105 nodes

of them here. First, our patents data set is a collection of 23,990 patents from the U.S.
Patent Database (subcategory 33: biomedical drugs and medicine). The goal here is to
discover sets of patents which, if removed, would have the greatest effect on the patent
citation network. In particular, we are interested in patents which are frequently mem-
bers of such sets; and we want to find which centrality measures correspond to these
frequent nodes in the citation network. We generated a citation network with 23,990
nodes and 67,484 links; then calculated four centrality metrics on each node: degree,
betweenness centrality, random walk with restart score (RWR), and PageRank. In the
Top-K framework, there are 4 vectors: one for each centrality measure. The indices into
the vectors are patents. The entryi in vectorj is the (normalized) centrality scorej for
patenti. Table 1 lists the patents with the highest frequency in the top-100K tuples. As
expected, the patents associated with DNA sequencing have the highest frequencies.
Table 2 presents the centrality scores for the patents listed in Table 1. As it can be seen,
the centrality scores alone could not have found these highly impacting patents (since
no patent dominates all four centrality scores).

Our second data set is composed of 4943 proposed UN resolutions, votes from
85 countries per resolution (yes, no, abstain, etc), and 1574 categories. Each proposed
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Patent Frequency Patent Title
Number (in Top-100K Tuples)
4683195 0.799022 Process for amplifying, detecting, and/or-cloning nucleic acid sequences
4683202 0.713693 Process for amplifying nucleic acid sequences
4168146 0.202558 Immunoassay with test strip having antibodies bound...
4066512 0.175828 Biologically active membrane material
5939252 0.133269 Detachable-element assay device
5874216 0.133239 Indirect label assay device for detecting small molecules ...
5939307 0.103829 Strains of Escherichia coli, methods of preparing the same and use ...
4134792 0.084579 Specific binding assay with an enzyme modulator as a labelingsubstance
4237224 0.074189 Process for producing biologically functional molecular chimeras
4358535 0.02674 Specific DNA probes in diagnostic microbiology

Table 1. Patents with the highest frequency in the top-100K tuples

Patent# DegreeBetweennessRWR PageRank
4683195 1.000 0.433 0.030 1.000
4683202 0.974 0.234 0.000 0.975
4168146 0.099 1.000 0.132 0.088
4066512 0.036 0.845 0.185 0.026
5939252 0.221 0.234 1.000 0.000
5874216 0.122 0.234 1.000 0.000
5939307 0.071 0.234 0.965 0.000
4134792 0.126 0.772 0.040 0.118
4237224 0.341 0.760 0.016 0.332
4358535 0.460 0.670 0.064 0.446

Table 2. Centrality scores for the 10 highest-frequency patents in the top-100K tuples

resolutions is assigned to one or more categories (with an average of 1.6 categories per
proposal). We select the most frequent 20 categories. Then,we score each country in
each category by how often it agrees (or disagrees) with the USA vote in that category:
1
m

points per agreement, wherem is the number of agreements per proposed resolution.
The input to our top-K algorithm then is a matrixF with 85 rows (one per country) and
20 columns (one for each selected category). The entries in this matrix are the weighted
agreement scores. We setK (in the top-K) to 100, 000. We repeat the experiment with
scores for disagreements. Figures 4(a) and 4(b) depict the ranking results.

5 Related Work

Previous studies of the Top-K problem focus on cases whereL is small (2 or 3) and each
list is very long. Fredman ([2]) studies the problem of sortingX + Y = {x + y|x ∈
X, y ∈ Y } in better thanO(n2 · log(n)) time (where|X | = |Y | = n). Frederickson
and Johnson ([1]) examine the slightly easier problem of discovering theKth element
of X + Y in O(n · log(n)) time. They also consider the problem of finding theKth

element of
∑m

i=1 Xi, proving that a polynomial algorithm inn for arbitrarym ≤ n and
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in the top-100K tuples

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

"-
.
/
01
"2
34
56
7
""

"8
/
99
57
":
-
.
;
5<
0"
=
>
5.
>
?"
"

"@
.
40
/
A
7
B"
"

"C
D
7
>
E
7
4"
:F
/
4E

7
?"
"

"G
>
H
57
""

"I
1
7
>
7
""

"F
1
/
07
>
""

"2
BJ
7
>
57
""

"@
<
4/
""

"K
/
>
A
7
4D
""

"G
47
>
":
@
<
49
57
?"
"

"-
7
/
H
5"
2
47
J
57
""

"=
L
47
5>
<
""

"F
<
B7
4/
9"
"

"-
D
45
7
""

"M
A
D
N
0"
"

"@
.
B7
>
H
""

"O
<
E
<
>
""

"P
Q<
61
.
9B
.
;
7
L
57
""

"@
7
L
59
07
>
""

!
"#
$
%
#
&
'
(
)

)

(b) Top countries disagreeingwith the USA
in the top-100K tuples

Fig. 4. UN resolutions: Voting records on the 20 most frequent categories

K would imply thatP = NP . Our approach uses fixed-memory heuristic search to
enumerateL-tuples. It hasO(n · log(n)) runtime and at mostO(K) storage.

6 Conclusions

We demonstrated that ranking sets of nodes in a network can beexpressed in terms of
the Top-K problem. Moreover, we showed that this problem canbe solved efficiently
using fixed memory by converting the problem into a binary search tree and applying
SMA* search. We also parallelized SMA* for the Top-K problemin order to achieve
super-linear speedup in a distributed-memory environment. Lastly we validated our ap-
proach through experiments on both synthetic and real data sets.
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