IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Fast Best-Effort Search on Graphs with Multiple
Attributes’

Senijuti Basu Roy, University of Washington Tacoma, Tina Eliassi-Rad, Rutgers University,
Spiros Papadimitriou, Rutgers University

Abstract—We address the problem of search on graphs with multiple nodal attributes. We call such graphs WAGs (short for Weighted
Attribute Graphs). Nodes of a WAG exhibit multiple attributes with varying, non-negative weights. WAGs are ubiquitous in real-world
applications. For example, in a co-authorship WAG, each author is a node; each attribute corresponds to a particular topic (e.g.,
databases, data mining, and machine learning); and the amount of expertise in a particular topic is represented by a non-negative
weight on that attribute. A typical search in this setting specifies both connectivity between nodes and constraints on weights of nodal
attributes. For example, a user’s search may be: find three coauthors (i.e., a triangle) where each author’s expertise is greater than 50%
in at least one topic area (i.e., attribute). We propose a ranking function which unifies ranking between the graph structure and attribute
weights of nodes. We prove that the problem of retrieving the optimal answer for graph search on WAGs is NP-complete. Moreover,
we propose a fast and effective top-k graph search algorithm for WAGs. In an extensive experimental study with multiple real-world
graphs, our proposed algorithm exhibits significant speed-up over competing approaches. On average, our proposed method is more

than 7x faster in query processing than the best competitor.

Index Terms—Weighted Attribute Graph, Graph Search, Top-k Algorithms

1 INTRODUCTION

Graphs provide a natural way for representing entities that
are ‘“connected” (e.g., authors are connected by their co-
authorships). A graph is commonly denoted by G = (V,€),
where V is the set of nodes or vertices and &£ is the set of
links or edges. We are interested in graphs where (1) nodes
have multiple attributes (e.g., an author has multiple areas
of expertise) and (2) attributes on nodes have non-negative
weights associated with them (e.g., an author has varying
degrees of expertise across different topics). We call such
data graphs Weighted Attribute Graphs (or WAGs for short).
WAGs are ubiquitous in real-world applications. Examples
include (1) co-authorship networks with multiple expertise
as attributes, (2) friendship networks with various activities
(such as liking, commenting, or clicking on different types of
posts) as attributes, (3) communication networks with various
connection types as attributes, efc. Moreover, the outputs of
mixed-membership community-discovery and role-discovery
algorithms [2], [11], [13], [17] are WAGs. Such algorithms
take as input a graph and assign multiple communities (or
roles) to nodes, with varying memberships—i.e., they output
WAGs. Note that graph search (the problem addressed in this
work) is different than graph clustering even though both
combine structure and node attributes. See [37] for an example
of the latter.

An important task on WAGs is to quickly and effectively
answer a user’s search, where the search can include (1)
constraints on the connectivity of nodes and (2) constraints

o senjutib@u.washington.edu,
o cliassi@cs.rutgers.edu,
o spapadim@business.rutgers.edu

on the weighted attributes. Consider the case where a WAG is
produced by a mixed-membership community-discovery algo-
rithm. Being able to search that output enables us to gain more
insight into the data and its patterns (see Section 7.3 for case
studies). In this work, we present a fast, best-effort solution
for search on WAGs. We normalize weights on attributes per-
node—i.e., the weights for all attributes within each node sum
to one. This normalization makes the query semantics easier
for the end user because it does not require the user to know
about the weight distribution of attributes for the entire WAG.
In addition, many applications naturally lend themselves to the
per-node normalization case—e.g., finding connected ports in
a communication network that are permanent ports (almost
always used; 90% or more) or ephemeral ports (seldom used;
10% or less). Figure 1 depicts an example WAG and search
query. If the application warrants it, our approach can easily
be adapted to other types of normalization—e.g., per-attribute
normalization where the sum of the weights for each attribute
is one across all nodes.

When addressing the problem of search on a WAG, one
has to consider issues such as structure vs. weighted-attribute
matching, point vs. range queries on weighted-attributes, exact
vs. inexact algorithms, and optimal vs. approximate solutions.
Our approach addresses all these issues, and has three compo-
nents: 1-WAG, s—WAG, and R—WAG. Given a graph G = (V, £)
and a matrix V¥ whose w;; entry corresponds to the weight
of attribute j on node ¢, T-WAG builds a hybrid index on
the graph that incorporates both the weighted attributes and
the structure of the network. Upon receiving a search query,
s—WAG utilizes the output of 1-WAG to quickly retrieve the
best k& matches based on both weighted attributes and structure.
R—-WAG ranks the results by utilizing a novel ranking function
that sums the divergence scores of the nodes in the solution.

* This work was funded in part by LLNL under Contract DE-AC52- 07NA27344, by NSF CNS-1314603, by DTRA HDTRA1-10-1-0120,
and by DAPRA under SMISC Program Agreement No. WO11NF-12-C-0028.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Michael J Carey

Jiawei Han

b

Umesh Dayal

g1
©

=

;aﬁhraicSmyth 8 l L’; Lq

Heikki Mannila
Chang
8 Michael I. Jordan, 8

(a) A partially constructed DBLP co-authorship network

©

Kevin Chen-Chuan

Mt |

Author 3: DB >=50%, Author4:
DM >25 % DB >95%

.

Author2: ML > 25 %,
DM > 50%

DB ov [

(a) WAG Query

Authorl: ML > 95%

Padhraic Smyﬂheikki Mannila"mwe‘ tlan
Padhraic Smyﬂl‘-leikki Mannila‘lmwel Han
Padhraic smyﬂheikki Ma“““a.llawel Han

(b)Top-3 s-WAG Results

Michael I. Jordan Michael J Carey

Umesh Dayal
Kevin Chen-
Chuan Chang

Michael I. Jordan

"

Michael I. Jordan

(b) A query over the DBLP co-authorship network and top-3 results
returned by s-WAG

Fig. 1. Example: The DBLP co-authorship network is a WAG. Each node is an author with three attributes: expertise in databases
(DB), data mining (DM), and machine learning (ML). A graph query on the DBLP co-authorship network may wish to find a path of 4
authors (structural constraint) such that it connects ML researchers to DB researchers using DM researchers as intermediary. The
latter property is enforced by using weights on nodal attributes (weight constraints; depicted by “bar heights”). Such a search with
path structure and range constraints on attribute-weights is depicted on the top-half of Figure 1(b). The bottom half of Figure 1(b)
describes the 3-best answers returned by our s-wAG. Note that author Heikki Mannila acts as “bridge” (primary expertise DM) to
connect authors who are somewhat uniformly spread between ML, DM (i.e., Padhraic Smyth) and DB, DM (i.e., Jiawei Han). The
expertise of the returned authors is shown in Table 1. A similar case study is presented in Section 7.3, but where the WAG is the

output of a mixed-membership role-discovery algorithm.

S—WAG supports range and point queries on the weighted at-
tributes. Range queries are flexible, where a weighted-attribute
can be in a range of values—e.g., expertise in data mining must
be greater than 50% (see top of Figure 1b). In point queries, a
weighted-attribute must have a specific value—e.g., expertise
in data mining must be 75%.

Author’s Name DB Weight | DM Weight | ML Weight
Michael 1. Jordan 0 0 1
Padhriac Smyth 0 0.52 0.48
Heikki Mannila 0 0.90 0.10
Jiawei Han 0.50 0.49 0.01
Michael J. Carey 1 0 0
Umesh Agarwal 1 0 0
Kevin Chen-Chuan 1 0 0
Chang

TABLE 1

Expertise in DB, DM, and ML of the authors returned in the
results of Figure 1(b)’s search query. The weights are the ratio
of the author’s publications in a DB, DM, or ML conference
listed in the DBLP data from 2005 to 2009.

Our contributions are as follows:

e Problem: We initiate the study of graph search on WAGs.
Table 5 summarizes the existing graph search approaches
and their differences with our s-WAG.

o Flexibility: We introduce a flexible querying mechanism
on WAGs, and a novel ranking technique, R—WAG, which
unifies the ranking of both structure and attribute weights
into a single measure.

o Efficiency: We first prove that finding the optimal match
for a given graph search on a WAG is NP-complete.
Next, we introduce s—WAG for search on WAGs. s—WAG
utilizes 1-WAG’s novel hybrid indexing scheme. 1-WAG

unifies a WAG’s attribute weights, structural features
(e.g., vertex degree), and graph structure into one struc-
ture that is easy to search. s—WAG uses a novel algorithm
that is efficient and returns the “optimal” answer to a
query in terms of its quality given the ranking function
in R-WAG (see Lemma 1).

o Effectiveness: We demonstrate s-WAG’s effectiveness and
broad applicability through extensive case studies on real-
world data and comparisons with the nearest competitor.

The rest of our paper is organized as follows. Section 2
outlines the notation used in the paper. Section 3 describes
queries on WAGs. Section 4 introduces our ranking approach,
R-WAG. Sections 5 and 6 present 1-WAG and s-WAG. Sec-
tion 7 presents our experiments. Section 8 discusses related
works. Section 9 concludes the paper.

2 PRELIMINARIES

Table 2 lists the notations used in this paper. Our data graph is
a WAG, defined by G = (V,£) and W. G defines the structure
of the WAG. W, a node x attribute matrix, contains attribute
weights for each node. As discussed in Section 1, the weights
across the attributes are row-normalized. So, each entry w; ;
is between 0 and 1, inclusive, and each row in W sum up to
1.

In this work, we consider undirected WAGs with no edge-
weights. Extensions of 1-WAG and s-WAG so they can incor-
porate directed WAGs with edge-weights are straightforward.
However, modifying R—WAG to incorporate edge direction and
weights in its ranking involves making non-trivial decisions
about the importance of directionality and edge-weights. This
is part of our future work.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

[Notation | Interpretation |
Gg=WV,¢) the data graph with vertex set VV & edge
set £
R ={ri,r2,...,r;} | the set of [attributes defined on V
w the node X attribute matrix containing
attribute-weights
Wi, j the weight of node 7 on attribute j

T matrix ¥V concatenated with the node
x degree vector, so W, degrees]

H,=(V',E") a graph query
Wy the query-node X attribute matrix con-
taining query attribute-weights
v a node 7 in the data graph
vg a node % in the graph query
G a candidate subgraph in response to a
graph query
F(Gs,Hy) ranking function; takes as input two
subgraphs
D(v;,v]) divergence score; takes as input two
nodes
TABLE 2

Notations used in the paper

3 GRAPH QUERIES ON WAGS

S—WAG supports graph queries on any given WAG. A graph
query on a WAG is a subgraph, which includes constraints
on both connectivity and nodal-attribute weights. One extreme
scenario of a graph query is one that only contains connectivity
specifications between the participating nodes and no nodal-
attribute annotations. The other extreme assumes that, in
addition to connectivity specifications, a graph query also
contains the attribute-weight specifications for all the query
nodes. s—WAG offers a wide range of queries by supporting
these extreme cases; and also those queries where only a subset
of query nodes contain weights on a subset of attributes. In
addition, the attribute weights can be specified as discrete
values or as ranges.

Formally, a graph query is defined by H, = (V',E’) and
W, (anode x attribute matrix, containing attribute-weights for
each node). Relative to the data graph, H, is a small graph.
Based on two different types of queries on the nodes of H,
we further define point graph query and range graph query.

Point graph queries (or simply point queries) contain H, =
(V',E") and W, where each w; ; € W, contains a discrete
value between 0 and 1, inclusive; and the rows of W, must
sum up to 1. Range graph queries (or simply range queries)
contain H, = (V’, E’) and Wj,. It offers flexible querying, as
the user does not need to specify weight on every attribute, or
even on every node. For the w; ; € W, that are specified, the
attribute weight is specified as a range. Figure 1(b) describes
the W, of a range query.

4 RANKING WITH R—WAG

Given a graph query (point or range), our task is to return its
top-k best matches. To do so, we need to rank the results con-
sidering divergence on the graph structure and on the weighted
attributes. The choice of divergence measures is orthogonal
to our work. Cha [3] provides a comprehensive survey on
various similarity and distance measures. While divergence on
a graph’s weighted attributes is fundamentally different from
the divergence on its structure, our proposed ranking approach,
R-WAG, unifies these into one single function. Alternative
approaches are also investigated—e.g., designing a ranking

function that linearly combines weighted attribute divergence
and structural divergence. However, such approaches lack
generality and demand the system to a priori understand the
relative importance between these two types of divergences.

4.1 R—WAG’s Ranking Function

Designing a ranking function that is not ad-hoc but is general
enough to accommodate both types of divergences is chal-
lenging. We take up a principled route, where the attribute
and structural divergences are both expressed using Jensen
Difference [24]. Suppose G is a candidate subgraph in
response to the graph query H,, then R-WAG’s ranking for
G with respect to H, is defined as follows:

|Vs]

F(Gs, Hy) = > D(vs,)
i=1

where v; € G, and v; € H,. Then, the divergence function
D(v;,v}) is defined as follows:

1 if v; is an unmatched node
JensenDiff (v;,v;) otherwise

D(vi,v;) = {

Jensen difference [24] is normalized so that a 0 value means
a perfect match and a 1 value means a perfect non-match.
The structural divergence is captured per unmatched node,
which is an extra node that needs to be added to the solution
to satisfy the graph query’s connectivity requirements. Such
a node will have maximal divergence—i.e., 1. We use the
Jensen difference for our divergence function since it has a
nice information-theoretic formulation. As mentioned before,
R-WAG can use any divergence function. The definition of the
Jensen difference is as follows:

Wim X ln(wnn) + Wity X ln(wz’m) _
2
Wim + Wil m, Wim + Wirm
l
U NERSUES)

Fo(vi,v}) = 2021

Recall that w;,, denotes the weight of ¢-th node for the m-th
attribute; and [is the number of weighted attributes.

Consider the pattern query in Figure 2(a) and a can-
didate answer to this query in Figure 2(b). For the pur-
pose of illustration, let us assume that the query nodes
A, B, and C, respectively, match WAG nodes A’, B’,
and C’. Then, the ranking score of the subgraph in Fig-
ure 2(b), is : JensenDif f(A, A') + JensenDif f(B, B’) +
JensenDif f(C,C")+1+1. Note that, a Jensen Difference of
1 is added for each of the unmatched nodes: B” and C”. Also
note that the proposed ranking semantics forces a candidate
answer to have at least as many nodes and edges as the query
contains; and that the additional unmatched nodes are allowed
to warrant approximate matching over the structure, leading
to a Jensen Difference of 1 for each unmatched nodes. Our
ranking function allows us to design efficient WAG search
algorithms since it is monotonic.

Now that we have discussed our ranking function, we can
formally define the graph search problem on a WAG.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

B’
B B”

: c”

A C A C

a) A pattern query b) A candidate answer

Fig. 2. An example query in (a) and a candidate answer in (b).
The ranking score of a candidate sub-graph is the summation
of the node-wise Jensen Differences for matched nodes (A’,
B’, and C’) and the maximum Jensen Difference of 1 for each
unmatched node (B” and C”).

4.2 Problem Definition

Top-k Graph Search on a WAG: Given a WAG, a graph
query (point or range), and an integer k, identify a set of k
subgraphs from the WAG such that (i) the k subgraphs are
ranked in ascending order of their overall divergence scores
(F) to the graph query; and (if) any subgraph that is not
present in the set has a larger divergence score with respect to
the graph query than the overall divergence score of the k-th
subgraph.

4.3 Problem Hardness

Theorem 1. The top-1 graph search problem is NP-Complete
under F.

Proof. (Sketch) We prove the NP-completeness considering
WAGs with zero nodal attributes (i.e., [= 0).

Given a WAG G, a query H,, k = 1, the decision
problem is whether there exists a sub-graph G in G, such
that F'(Gs, H;) = 0 (i.e., zero divergence between G, and
H,). It is easy to show that this problem is in NP. NP-
hardness is proved by reducing an instance of the sub-graph
isomorphism [9] to an instance of our problem. Given two
graphs G and G’, the problem of sub-graph isomorphism is
to check whether G’ contains a sub-graph that is isomorphic
to G. To reduce the subgraph isomorphism to an instance of
our problem, G’ = G, and G = H,.

Given the above instance of the graph search problem, the
objective is to find Gy, such that F(G,, H;) = 0 and there
exists a solution of the subgraph isomorphism problem, if and
only if, a solution to our instance of the graph search problem
exists.

O

The top-k graph search problem is also NP-complete, since
the simpler top-1 search is NP-complete.

5 HYBRID INDEXING WITH 1 -WAG

Figure 3 depicts the key components and processes for graph
search on a WAG. Specifically, for a given WAG, 1-WAG
builds and maintains a novel hybrid index structure. This
structure is subsequently used to speed-up graph search during
query time and facilitates the matching over both the weighted
attributes and the structure of the WAG. The 1-WAG structure
is hybrid because it is over weighted attributes, structural
features, and graph structure. We present 1 -WAG in detail next

and defer the discussion on s-WAG (i.e., the search algorithm)
to Section 6.

First, a balanced tree is constructed for the matrix 7. Recall
that 7 consists of the weight matrix W concatenated with the
vertex degree vector (i.e. [W, degrees]). The 1-WAG structure
has the following properties:

e The root has between 1 and M entries (unless it is a
leaf). M is the degree of the tree. All intermediate nodes
have between M /2 and M entries each. Each leaf has
between M and 2M entries.

o A leaf is a WAG vertex with attribute weights R.

« Each intermediate node is a minimum bounding rectangle
(MBR) of dimensionality [+ 1 (recall [is the number of
weighted attributes). An intermediate node with j entries
has j children, and the bounding rectangle indexes the
space of its children.

Second, to enable fast structural search, at every leaf (i.e.,
a vertex in G), 1-WAG maintains an inverted-list index of the
immediate neighbors of each graph vertex.

The 1-WAG structure is built by transforming each row
in 7 into a multi-dimensional point, where the number of
dimensions corresponds to the number of weighted attributes
plus structural features (all computed at the vertex level).
For this work, we use one structural feature, vertex degree.
However, other vertex-level features (such as clustering co-
efficient, PageRank, etc) can also be used by our method.
Subsequently, this space is indexed. 1-WAG “fuses” an R-tree
family structure [12] with an inverted-list index to enable fast
search over weighted attributes and structural features of WAG
vertices, plus the WAG’s graph structure (i.e., connectivity).
Moreover, 1-WAG has a getNext () interface over 7, which
returns the next best candidate vertex of G that has the least
divergence with respect to a given WAG query vertex.

Each leaf of the 1-WAG structure corresponds to a vertex
in the input WAG; and contains an inverted-list, which rep-
resents the set of vertices that are its immediate neighbors
in the input WAG. While there exist more complex structural
indexing techniques in the literature, these additional indexing
capabilities require expensive pre-processing. As we show in
Section 7, the 1-WAG structure we propose here is sufficient
for fast best-effort search.

getNext(): Given any graph query H, = (V', E’), for each
query vertex v, € V', a getNext () call is issued to the
1 -WAG structure to return the vertex in G that has the smallest
divergence with v} (as described in Section 4). Specifically,
getNext () searches the 1-WAG structure based on the type
of query on v} (range or point); then it prunes the possible
matches for v}; and finally it selects the node with the least
divergence in terms of both weighted attributes and structural
features.

Range Query: Given a range query vertex v}, its weight
distributions over the specified attributes and degree are used
to transform v to a query rectangle in the {+1 dimensional
attribute-space. As an example, a query vertex with range
specification such as <0.2 on DB and >0.5 on DM, and degree
of at least 3 can be translated as ranges [0.0,0.2), (0.5, 1.0],

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

I-WAG Structure

S-WAG Processing

Query

Input WAG
) ‘ Jiawei Han

-4l -]

ﬂ Michael J Carcy
i ﬂ
ok
i I / \
/' “Padhraic Sinyth am ﬂj
-
¥
|

|
i
Heikki Mannila. - - Kéun Chen-Chuan

'
'
v o Cnang

//” Bn\\ "o,
8“‘Mig?fel I Jordah, /’778 "
\;_,g:: 777777777 ,,//g

- Umesh Dayal

[
S
g
a
B
=
Index build

Legend:

Internal Lea
nnde (graph)

@
&

etrieve initial
ndidate nodes

S
nzpmf

(Final ranked list
[I] A of query answers
5
3

Link nodes
(expand edges)

Fig. 3. Overview of graph search on a WAG: The input WAG is used to build a hybrid 1-wAG structure; see Section 5. When a
query arrives, the 1-WAG structure is used to efficiently retrieve the top-k best matches incrementally, considering attribute weights,

structural features, and graph structure; see Section 6.

and [3, MazDegree],' respectively; and a query rectangle can
be formed. For the attributes whose weights are not specified
in the query explicitly, their respective ranges are considered
to be [0,1]. To enable search, s—-WAG starts from the root of
the 1-WAG structure and traverses down the tree. If a current
node is not a leaf and if it overlaps with the query rectangle, it
continues to search further down in that subtree. If the current
node is a leaf, and the leaf is contained in the query rectangle,
that leaf is returned as a candidate answer.

Point Query: Given a point query vertex v, it is first
transformed to a point in [+1 dimensional space. Similar to
range queries, the search for the best matching vertex to v’
begins at the root of the 1-WAG structure and traverses down.
It tries to prune some of the intermediate branches, and keeps
a list of active branches to be expanded further. The algorithm
terminates once the active branch list is empty.

Pruning: We use the bounding rectangles of the 1-WAG
structure to decide whether or not to search inside the subtree
that it indexes. These rectangles can be searched efficiently us-
ing MINDIST and MINMAXDIST [21]. MINDIST is the opti-
mistic distance between the point under consideration and any
object indexed by the minimum bounding rectangle (MBR).
Specifically, if v} is inside the MBR, MINDIST(MBR, v}) =
0. Otherwise, MINDIST (MBR,v}) is the minimal possible
divergence from the query point v} to any node inside or on the
perimeter of the rectangle. On the other hand, MINMAXDIST
is the pessimistic distance between the point and any object
that the MBR indexes. So, MINMAXDIST(MBR,v}) is the
smallest possible upper bound of distances from the point v, to
the MBR. The following property is used for effective pruning:

MINDIST(MBR,v}) < NN(v,v})
< MINMAXDIST (v;, MBR)
where NN denotes the nearest-neighbor distance.

Given a query vertex, the 1-WAG structure is progressively
searched from the root, using the technique described above.
The aforementioned pruning criteria are applied, to decide
whether to prune or to add an intermediate node to the existing
active branches. However, at a leaf, the actual divergence

1. MaxzDegree is the highest vertex degree in G.

between the query vertex v’ and the leaf v (which corresponds
to a vertex in the WAG) is computed, their divergences with
that of the smallest divergence seen so far are compared, and
it is updated if necessary. When the active branch list is empty,
the vertex with the smallest divergence to v’ is returned.

To obtain the candidate subgraph with the smallest diver-
gence to the graph query, the inverted-lists at the selected
leaves are searched for the edges that produce the smallest
divergence. This ensures that the candidate subgraph returned
as an answer to the graph query has the smallest divergence
in terms of weighted attributes, structural features, and graph
structure.

6 SEARCHING WITH S—WAG

We present an efficient and “optimal” algorithm (referred to as
s—WAG in the experiments) for the top-k graph search problem
on WAGs. “Optimality” here is with respect to answer quality,
and not necessarily with respect to query processing time (see
Lemma 1). Our algorithm uses the 1-WAG structure described
in the previous section. A naive algorithm will enumerate all
possible candidate results before it determines the final top-%
results. This naive approach is prohibitive for even moderately
large graphs.

Given any graph query, s-WAG executes the following tasks.
(1) It uses the getNext () interface of the 1-WAG structure
to retrieve the best candidate vertex for every query vertex.
(2) It uses the inverted-list structure of the 1-WAG structure,
to retrieve the best candidate edges for every query edges.
(3) When k answers are not fully computed, the algorithm
determines whether to expand structurally (i.e., introduce ad-
ditional vertices to connect the candidate vertices that represent
the endpoints of a query edge), or to issue getNext () calls
to retrieve the next best candidate vertex from the 1-WAG
structure. (4) It returns the top-k matches ranked by increas-
ing order of their overall divergence scores (as described
in Section 4). In order to perform this last step efficiently,
the algorithm maintains a threshold value that captures the
minimum divergence that an unseen or partially computed
candidate subgraph may have. The algorithm achieves early-
termination when the threshold is not smaller than the score

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

of the k-th best result thus far. In order to accomplish tasks
(3) and (4) described above, s—-WAG exploits the overall
divergence score as a threshold, which is monotonic.

Range Query: Algorithm 1 describes the pseudocode for
s—-WAG. Given the query vertices, the task is to gradually
retrieve the candidate vertices in a round-robin manner by is-
suing getNext () calls to the 1-WAG structure. Note that the
notion of vertex match for range query is binary—i.e., as long
as a vertex in the WAG satisfies the range conditions specified
on each attribute of a query vertex, the WAG vertex is returned
as a match for the query vertex. Next, the search algorithm
“stitches” the vertices together to recover the least divergent
graph structure for the graph query. We define candidate edge
to that end. A candidate edge is a path (can be a single edge)
that is representative of a query edge in the WAG. At least one
endpoint of a candidate edge corresponds to a candidate vertex.
The candidate edge is complete if both endpoints correspond
to candidate vertices, or else the candidate edge is partially
complete. A complete candidate edge does not need to be
expanded further, whereas, the partially complete candidate
edges may needed to be expanded. For every candidate edge
(complete or partially complete), the algorithm keeps track of
its current divergence. This way, a candidate edge-set C is
maintained during the execution of the algorithm.

Note that for range queries, all candidate vertices that
satisfy the specified range constraints of the corresponding
query vertex are equally desirable. Therefore, the overall
divergence score primarily counts the additional vertices (each
corresponding to Jensen Difference of 1) that are to be used
to connect the candidate vertices in order to match the query
structure for the purpose of ranking.

During query processing, when the £ results are not fully
computed, s—WAG (see Algorithm 1) issues additional calls
(in a round-robin manner) to the 1-WAG structure to retrieve
the next best candidate vertex that may be used to match
the query. If the 1-WAG structure no longer returns a new
candidate vertex with the getNext () call, the algorithm
attempts to expand the retrieved candidate vertices structurally,
one by one, until k results are computed. However, a more
interesting scenario occurs when the algorithm has already
found k results, but it needs to guarantee that the current k
results are indeed the global k-best answers, based on the
ranking function. This step is validated by considering the
value of the threshold (described next).

The value of the threshold is the minimum divergence
score that any unseen candidate answer may have. In order
to compute the threshold efficiently, for every query edge ¢,
the algorithm keeps track of two additional quantities when
considering its candidate edges: (1) the smallest divergence
score considering its candidate edges, and (2) the latest di-
vergence score of its last partially complete candidate edge.
Given the query H, with |E’| edges, the threshold at that
step is computed by aggregating the respective divergences of
the query edges that lead to the smallest sum. The algorithm
terminates when the divergence score of the k-th best result
does not exceed the threshold. Note that, as soon as the
algorithm retrieves a new vertex from the 1-WAG structure or
expands the partially computed answers by an edge, it updates

Algorithm 1 Optimal Algorithm for Top-k Range Query

Require: s—-WAG-Index, Query H, = (V' E'), k

1: Issue getNext () in a round-robin fashion to get the next best
candidate vertex for each query vertex v,
Form candidate edges and add to candidate edge set C
stitch candidate edges and form k& answers
Update ResultSet with top-k answers based on divergence
threshold = min sum of divergences between query & candidate
edges
while the C is not empty do

if (threshold < DivergenceScore(ResultSet[k])) then

Issue getNext () in round robin fashion

9: Update ResultSet with top-k candidate outputs
10: else
11: Output ResultSet as the best k-results
12: break
13: end if
14: end while

15: return ResultSet

@D

the threshold value.

Point Query: The optimal algorithm for searching point
queries is similar (in principle) to that for range queries.
The main differences are that (1) ranking of a point query
requires stricter matches on the weighted attributes; and (2)
during query processing, if the top-k answers are not fully
computed, then the algorithm has to decide whether to expand
node-wise (i.e., issue another getNext () call), or to expand
structurally. For that, the algorithm computes two threshold
values — one associated with issuing another getNext () call
and another associated with structural expansion. It chooses
the expansion that produces the smaller threshold, updates the
threshold, and rechecks the pruning conditions. The algorithm
overall only differs in matching the WAG vertices with query
vertices considering Jensen Difference. Unlike range query,
a match between a query vertex and a WAG vertex is not
binary (i.e., match or no-match), rather, there is an associated
divergence score between [0,1]. The final ranking score,
therefore, has to account for divergence arises due to both
vertex and pattern match. Beyond that, the rest of the s-WAG
is akin to that of range query.

Lemma 1. The top-k results returned by s—WAG are optimal
in the context of answer quality, considering the ranking
function in R—WAG (described in Section 4.1).

Proof. (Sketch) We prove this lemma by contradiction. With-
out loss of generality, let us assume that the above claim
is incorrect—i.e., suppose given a query, s—-WAG does not
return the top-k results in the context of answer quality. This
means that after s—WAG terminates, there is at least one result
not returned by s-WAG whose ranking score is smaller than
the ranking score of the k-th result, returned by s-WAG.
Recall that low ranking score denotes a smaller divergence
score and a better match. As described before, R—WAG is
monotonic—i.e., the ranking score only increases as s—-WAG
expands to include more vertices. Also by definition, the
threshold contains the best (i.e., minimum) score of any unseen
candidate result. So, the value of threshold being tracked by
s-WAG is smaller than the score of the k-th result when the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

algorithm terminates. Note this is a contradiction, because
s—-WAG will terminate only when threshold is at least as large
as the score of the k-th result. O

7 EXPERIMENTAL EVALUATION

I1-WAG and s-WAG were implemented in JDK 1.6. All exper-
iments were conducted on a 2.66GHz Intel Core i7 processor
with 8GB memory, S00GB HDD, running OS X. The Java
virtual memory size is set to 1GB. The closest competitor of
S—-WAG is G-ray [28]. We had to modify G-ray to accept
WAGs as input (see details below). We implemented the new
version of G-ray, which we call WAG-ray, using Matlab
7.12.0 and the same system configuration used in [28].

7.1 Data

Table 3 lists the real-world data sets used in our experiments.
We have four smaller datasets with thousands of vertices and
edges; and three large datasets with millions of vertices and
edges.

Our smaller datasets include two DBLP co-authorship
graphs, one from databases (DB) and another from data mining
(DM).2 Each author constitutes a vertex in the WAG. The
attributes for DBLP-DB are SIGMOD, VLDB, and ICDE, and
that of DBLP-DM are KDD, ICDM, and SDM. Given a vertex
(i.e., an author) and an attribute (i.e., a conference), the weight
of that attribute is computed by calculating the percentage of
the author’s publications in the corresponding conference. Data
in these graphs are from 2005 to 2009.

Our third smaller dataset is an IP communication network
from Lawrence Berkley National Laboratory (LBL) that con-
tains the communication information between different IP
addresses in a 24-hour time window.?> Each unique IP address
corresponds to a vertex in the LBL graph. An edge between a
pair of vertices exists if they have had any communication
between them. We have three different attributes for each
IP address: well-known ports in range [0,1023], registered
ports in range [1024,49151], and ephemeral ports in range
[49152,65535]. The weight on each attribute corresponds to
the percentage of communications on that port for the given
IP address.

Our fourth and last smaller dataset is an online social net-
work extracted from YouTube.* Each vertex here is a YouTube
user; and two users, x and y are connected if either x’s profile
page links to y’s, or y’s profile page links to x’s, or both. The
attributes are discovered through a mixed-membership role-
discovery algorithms [13]. Each vertex contains 6 different
roles (i.e., attributes). They are:

1) Global Hub: Propensity to be a global hub vertex. Ver-
tices with high weights on this attribute have high out-
degree, high in-degree (though lower than out-degree),
high PageRank, and high biconnected component score.

2) Periphery: Propensity to be a periphery vertex. Vertices
with high weights on this attribute have slightly higher
than default eccentricity.

2. http://www.dblp.org/search/index.php
3. http://www.icir.org/enterprise-tracing/download.html
4. http://socialnetworks.mpi-sws.org/data-imc2007.html

3) Authority: Propensity to be an authority vertex. Vertices
with high weights on this attribute have high PageRank,
high in-degree, high total degree, and high biconnected
component score.

4) Cliquey: Propensity to be a cliquey vertex. Vertices with
high weights on this attribute have a high clustering
coefficient.

5) Local Hub: Propensity to be a local hub vertex. Vertices
with high weights on this attribute have high out-degree
and high biconnected component score.

6) Nondescript: Propensity to be a nondescript vertex. Ver-
tices with high weight on this attribute do not stand out
in terms of their values for degree, clustering coefficient,
PageRank, eccentricity, or biconnected component score.

Our larger graphs consist of a Yahoo! IP communication
network, an Amazon product co-purchasing network, and a
social-reader network from a large US-based media company.
Our first larger dataset is from Yahoo!.> Each record in the
Yahoo! dataset contains start and end times of communication,
source and destination IP addresses, their respective port
addresses, and other related fields. The Yahoo! graph consists
of IP addresses as vertices and communications between IPs
as edges. The attributes (as well their respective weights on
each vertex) are extracted following the same procedure as
described above for the LBL dataset. The attribute weights
are extracted by considering different port numbers through
which a unique IP communicates. These weighted attributes
are similar to the LBL weighted attributes: well-known ports,
registered ports, and ephemeral ports.

Our second of the larger datasets is a co-purchasing graph
from the Amazon website.® It contains product metadata and
review information for 548,552 different products (Books,
music CDs, DVDs and VHS video tapes). Each product
contains: title, sales rank, list of co-purchased products, and
product reviews (time, customer-id, rating, number of votes,
number of people that found the review helpful). Each product
is a vertex in the graph, and an edge exists if two products
were co-purchased. The attributes are extracted from product
ratings (in [1, 5]), and categorized further: excellent (rating 5),
good (ratings 3 or 4), and bad (ratings 1 or 2). The attribute
weights are the normalized ratio of the total number of votes
on a given attribute over the total number of votes.

Our third of the larger datasets is a social-reader network
from a large US-based media company with approximately
1.5M vertices and 6.8 edges. Each vertex in this dataset
is a user of an online social network, who has subscribed to
the social reader application. We extract a friendship social
network based on users who are friends and who have read at
least one common article during the week of April 2, 2012. We
have topic information on each article. So, the attributes for
a vertex are the propensity to read articles on news, arts and
entertainment, and technology. The weights on the attributes
correspond to the normalized ratio of the total number of
articles read in a given attribute over the total number of
articles read by the user.

5. http://webscope.sandbox.yahoo.com/
6. http://snap.stanford.edu/data/amazon-meta.html

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Dataset # Nodes # Edges # Attributes | Sparsity
Amazon 548,000 1,788,725 3 0.01
DBLP-DB 6,413 40,493 3 0.32
DBLP-DM 2,104 8,816 3 0.33
YouTube 15,480 86,788 6 0.42
Yahoo! 1,941,878 | 3,929,607 3 0.52
LBL 3,055 15,577 3 0.53
SocialReader | 1,475,348 | 6,831,944 3 0.6

ABLE 3

Datasets used in our experiments. The table is sorted in
ascending order of sparsity values. Sparsity is measured by:

#0’sin W
#tentries in W *

7.2 Experimental Setup and Methodology

To the best of our knowledge, previous graph search meth-
ods cannot deal with graph queries on graphs with multiple
weighted attributes—i.e., WAGs. However, rather than just
comparing against naive baselines, we appropriately modified
an existing work, called G-ray [28], that efficiently supports
search on graphs with unweighted, single attributes (i.e., each
vertex has a single attribute and no weights). We primarily
report comparative studies between s-WAG and this modified
competitor, which we call WAG-ray. The performance of
other baseline methods is typically even worse. We describe
WAG—-ray next.

WAG-ray: We appropriately modify G-ray [28], which was
originally designed for search over single attribute graphs,
to handle WAGs. G-ray utilizes a goodness score based on
random walk with restarts to measure how well a subgraph
matches a graph query. G-ray uses a scalable algorithm to find
and rank candidate subgraphs by first finding seed vertices
(or seeds for short), then expanding neighborhoods around
seeds, and finally finding bridges to connect the neighbor-
hoods. We refer to the modified G-ray as WAG-ray. Our
modifications are as follows. We create an augmented graph
by adding ! ‘dummy’ vertices to the WAG (these dummy
vertices correspond to the [attributes of each vertex); then
we connect each original vertex to all [dummy vertices with
edge weights that correspond to the weights of the attributes
on that vertex. This process introduces |V | x additional edges
to the original graph. Next, given a query vertex with multi-
attribute constraints, the seed finding process now selects a
seed based on the query condition. We initiate the random
walk from the seed. After these changes, our query becomes
the standard WAG—ray query for range constraints. WAG-ray
is implemented only for range queries. We note that for point
queries, the attribute matching function in WAG-ray needs to
be modified to consider approximate matches over weighted
attributes. Unless otherwise stated, we set the number of
iteration in WAG-ray to 10, and the escape probability to
0.9. These numbers were suggested in [28].

Additional Baselines: In addition to the experiments re-
ported in this paper, we also performed extensive experiments
on three other baseline methods, which we summarize here.
A naive algorithm was implemented that adopts a brute-force
approach to find the top-k answers of a graph query. Given a
WAG query, it first finds a set of mapping candidate vertices
for every vertex in the query, with a linear scan over W. It

then establishes edges between every pair of candidate vertices
that represent the endpoints of an edge in the query. Finally,
it ranks all enumerated valid answers based on the overall
divergence score and returns the best k results. This algorithm
takes several minutes to process queries on smaller graphs
(with thousands of nodes and edges), and does not terminate
within 30 minutes on larger graphs (with millions of nodes
and edges).

With a similar ranking function to R—-WAG but one that
ranks a query edge relative to an edge in the WAG (instead of
ranking a query vertex), we extended our proposed indexing
and the query processing approaches to accommodate edge-
based ranking. In this case, instead of a vertex, the 1-WAG
structure indexes each edge based on the attribute weights
of its endpoints. Similarly, the algorithm also retrieves one
candidate edge at a time (as opposed to a candidate vertex),
and performs the matching accordingly. In our experiments,
this method improves the query processing time by less than
30% on average, while it takes significantly longer time to
build the 1-WAG structure. For brevity, these results are
omitted.

Finally, we also implemented a greedy algorithm, which
uses the 1-WAG structure to find the best matching candidate
vertex of the highest-degree query vertex as the seed. After
that, it greedily expands and matches the neighbors of the
seed vertex with the query vertices using our proposed ranking
function. Due to its greedy nature, this algorithm is about
20% faster in query processing than s—WAG on an average.
However, this comes at a substantial penalty in quality: about
55% of the time it does not return the best solutions. These
results are also omitted for brevity.

Queries: We primarily considered four different types of
structures for graph query—namely, star, path, loop, and
clique. For our performance experiments, a point query vertex
is generated from the underlying W matrix uniformly at
random. A range query vertex is generated from a point query,
where we arbitrarily introduce ranges on the specific attribute
weights. In either case, the graph search is one of the four
aforementioned graph queries.

Summary of experiments: Our experiments are divided
into three groups: (1) case studies, (2) build-time experiments
and (3) run-time experiments. We present a case study using
the YouTube data. All five algorithms described above are
evaluated in the build time and runtime experiments using
the datasets described earlier. For brevity, we report results
on a subset of our datasets. Unless otherwise noted, the
omitted results are similar to the ones depicted. Moreover,
since WAG-ray is the most competitive baseline to s—-WAG,
we only report results on s—WAG and WAG-ray.

Summary of Results: Our build time experiments demon-
strate that 1-WAG scales well with increasing graph size,
number of attributes, and sparsity. The run-time experiments
are conducted by varying the number of nodes, number of
returned results (i.e., k), sparsity, selectivity, and weights of
the node attributes. We observe that the run-time of s-WAG
outperforms WAG-ray in all the cases. Moreover, we observe
that the difference in run-time between s-WAG and WAG-ray
is smallest under very high sparsity. This observation can

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Build Time Build Time # Queries after which
S-WAG recovers the
difference in build time
Dataset # Vertices | # Edges | # Attributes | Sparsity | s-WAG (sec) | WAG-ray (sec) | with WAG-ray
SocialReader | 1,475,348 | 6,831,944 3 0.60 911 65.7 127
LBL 3,055 15,577 3 0.53 11.4 0.03 2
Yahoo! 1,941,878 | 3,929,607 3 0.52 486 18.9 66
YouTube 15,480 86,788 6 0.42 83.7 4.2 7
DBLP-DM 2,104 8,816 3 0.33 6 0.02 1
DBLP-DB 6,413 40,493 3 0.32 18.6 0.06 5
Amazon 548,000 1,788,725 3 0.01 327.6 5.2 32
TABLE 4

Build times (in seconds of wall clock) for the 1-WAG structure and WAG-ray’s index. The table is sorted in descending order on
sparsity of the vertex x attribute matrix, WW. Naturally, WAG-ray is faster than 1-wWAG in build time, since the number of links it
creates in the augmented graph is linear to the number of vertices (when number of attributes is constant). The last column lists
the number of queries for WAG-ray after which s—-WAG recovers the difference in build time. The small values in this column
suggest that the combination of 1-WAG and s-WAG are a better graph search approach than WAG-ray.

be explained with the reasoning that under high sparsity, a
weighted attribute graph effectively becomes a graph with
one nodal attribute. Therefore, the effectiveness of WAG-ray
improves, as WAG—-ray was originally designed for graphs
with one nodal attribute. Build time of WAG-ray is superior
than that of 1-WAG as WAG-ray uses a shallow indexing
structure (recall that it creates a small number of dummy
nodes, same as the number of nodal attributes and establishes
connections between the actual nodes and the dummy ones),
leading to comparatively smaller build time. However, since
the run-time of WAG—-ray is much higher than that of s-WAG,
S—-WAG levels the extra build time with a reasonably small
work-load. Additionally, we demonstrate the pruning effective-
ness of T-WAG for a given query workload. This observation
corroborates the effectiveness of s—-WAG for weighted attribute
graphs.

7.3 Case Studies

In Section 1, we presented a case study on the DBLP co-
authorship network. Here we present another case study on
the YouTube data (=15.5K vertices and ~87K edges), where
the attributes were produced by a mixed-membership role-
discovery algorithm (see details in Section 7.1). We asked the
following graph searches:

« How many paths exist, where a primarily global hub (i.e.
Global Hub > 0.5) is connected to a primarily local
hub (i.e. Local Hub > 0.5), which in turn is connected
to a primarily peripheral vertex (i.e. Periphery > 0.5)?
This is an interesting query because a periphery vertex
uses a local hub as a bridge to connect to a global hub.
Ss-WAG finds 412 such patterns in the YouTube graph.
These patterns represent 1.8% of the 3-vertex paths in
this graph.

o How many triangles exist that involve a global hub (i.e.
Global Hub > 0.5), a local hub (i.e. Local Hub > 0.5),
and a cliquey vertex (i.e. Cliqguey > 0.5)? This query
is interesting because a cliquey vertex has a connected
global- and local-hub as neighbors. s-WAG finds 119
such patterns in the YouTube graph. These patterns
represent 0.7% of the triangles in this graph.

o How many star patterns with 5 vertices exist, where the
center of the star is an authority (i.e. Authority > 0.5),
and all other remaining vertices are regular users (i.e.
Nondescript > 0.5)? This is an interesting query because
an authority has a handful of nondescript users as its
neighbors. s-WAG finds 137 such patterns in the YouTube
graph. These patterns represent 1.1% of the 5-vertex stars
in this graph.

« How many loop patterns with 4 vertices exist, where all
the vertices are local hubs (i.e. Local Hub > 0.5)? This
query is interesting because local hubs are forming a loop
with each other. s—-WAG finds 523 such patterns in the
YouTube graph. These patterns represent 3.5% of the 4-
vertex cycles in this graph.

Baseline Algorithms: We also run the case studies on
the baseline algorihtms. The results indicate that WAG-ray
finds the same set of answers as s—-WAG does; however, the
processing time is about 3.75 times longer compared to that
of s—WAG. Our brute force baseline algorithm is significantly
slower and does not terminate in 1 hour in most of the cases.
Our third baseline solution (i.e., edge-based solution) also
discovers the same patterns, but takes 70% longer time to
build its index structure. Finally, the greedy algorithm (i.e.,
the final baseline algorithm) finds those appropriate patterns
about 47% of the time on an average.

As these results show, conducting graph search on WAGs
is a powerful data exploration tool and s-WAG is an effective
solution towards that end.

7.4 Build Time Experiments

What is the build time of the 1-WAG structure on differ-
ent datasets? Table 4 presents the build time results. For
WAG-ray, the build time is the time it takes to create the
augmented graph. This could be considered as a ‘“shallow
index.” As is evident, the 1-WAG structure is efficient and
scales well with increasing network size. Given similar spar-
sity value, build times are comparable (between DBLP-DB
and DBLP-DM) in 1-WAG, even when the number of vertices
increases by 3 times. With a 302x increase in the number of
vertices between DBLP-DB and Yahoo!, build-time increases
only by 26X in 1-WAG. Amazon, despite being a large graph

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

with very low sparsity (i.e., very few zeros in its VW matrix),
has a small build time (< 6 minutes). 1-WAG takes less time to
build sparse YV matrix, as it needs to create a smaller number
of intermediate nodes in its structure to index the vertices of
the WAG.

WAG-ray’s simpler index takes less time to build than
1-WAG. However, as shown in the very last column of Table 4,
S—WAG is able to recover this time after processing a small
number of queries—e.g., 1 query for DBLP-DM, and 66
queries for Yahoo!.

7.5 Runtime Experiments

We compare the efficiency of s—WAG vs. WAG-ray. We report
the average query processing time (Avg QPT) by varying result
size (i.e., k), varying the number of query vertices (since the
queries have specific graph patterns, the number of edges are
also known accordingly), varying sparsity, and then varying
query selectivity and attribute weights. For these runtime
experiments, we consider four different types of graph queries:
star, path, loop, and clique. Our query workload consists of
80 queries (20 queries of a particular graph search), and we
report the average query processing time. Finally, we present
results describing the pruning effectiveness of 1-WAG.

Query-processing time as a function of result size: We
compare query-processing time of s—-WAG and WAG-ray by
varying k (i.e., result size). Figure 4 shows these results:
S—WAG outperforms WAG-ray on both the smaller and larger
graphs. Among the larger graphs, the difference in query
processing time is more significant in Amazon than in Yahoo!.
The very low sparsity of Amazon’s weighted attribute matrix
(i.e., W) makes the computation favorable to s-WAG, while
WAG-ray was primarily designed for graphs that contain one
attribute per vertex (i.e., very high sparsity of the weighted
attribute matrix).

Query-processing time as a function of number of
vertices: We compare query-processing time of s—-WAG and
WAG-ray by varying the number of vertices in the query.
Figure 5 lists the results. s—WAG outperforms WAG-ray both
on the smaller and larger graphs. Both s-WAG and WAG-ray
scale well with the increasing number of query vertices.
Among the larger graphs in our set, Amazon exhibits the
best performance with increasing number of vertices. This
observation is again due to the very low sparsity value of the
weighted attribute matrix (i.e., ¥V) of Amazon, which helps it
scale well with the increasing number of vertices in the query.

Query-processing time as a function of sparsity in the
weighted attribute matrix: In these experiments, we vary
the sparsity of the matrix WV, and report the average query
processing time of s-WAG and WAG-ray. For each vertex, we
compute the entropy of its weight distribution, and sort vertices
based on their entropy values. That is, the vertices at the top
are those whose distributions are closest to uniform. To satisfy
certain sparsity percentage larger than its original sparsity,
we scan this sorted list from the bottom, and transform the
membership of a vertex to a single attribute (i.e., attribute that
has the largest weight gets 1, the rest get 0 values) until the
desired sparsity is satisfied. In these experiments, k is set to 5,
and the number of vertices in the query is set of 5. Figure 6

depicts our results for this experiment. We observe that the
query processing time increases with increasing sparsity for
S—-WAG, but decreases for WAG-ray. The impact is more
in the larger graphs compared to the smaller graphs. Note
that with increasing sparsity, WAG-ray for a WAG becomes
the standard G-ray [28], which positively impacts its query
processing time. Conversely, s-WAG takes more time with
increasing sparsity (more zeros in W), since it requires the
generation of more candidate subgraphs.

Query-processing time as a function of query selectivity
and attribute weights: We first vary query selectivity and
measure the average query processing time. We profile the in-
termediate nodes of 1-WAG to ensure certain selectivity x and
design the query predicates that satisfy the bounding values
of those selected intermediate nodes. Then, we demonstrate
the average query processing time by varying weights. For a
query with n nodes and [attributes, we choose one of the
attributes r; at random for each node, and vary its weight in
five different windows: [0, 10%)], [0, 20%)], [0, 30%], [0,40%],
[0,50%]. The other attributes of that node are re-adjusted based
on the change on r;. For breivty, these results are presented
for the DBLP-DB and Yahoo!. Figure 7 contains the results.
S—WAG outperforms WAG-ray in all the cases.

Pruning effectiveness of 1-WAG: Here, we consider a
query workload of 80 queries (each with 5 nodes) and measure
the average percentage of nodes that is pruned by 1-WAG
across our datasets. Figure 8 depicts the results. 1-WAG is
able to prune 60% of the nodes on average. The pruning is
highest on the Amazon dataset due to its very low sparsity.

80
370

S

=3

= 60

=

H]

E0

Sa0

=l

K30

=20

5

=10
0

DBLP-DB Youtube Yahoo! SocialReader

B W

ge

Amazon

Fig. 8. 1-waG is able to prune more than 60% of the nodes
across our datasets on average. This experiment considered
star, path, loop, and clique pattern queries with 5 nodes each.

7.6 Discussion

Both WAG-ray and s-WAG scale linearly with increasing
graph size in build time. At the same time, WAG-ray outper-
forms s—WAG in build time almost consistently. This is unsur-
prising, since the indexes in WAG-ray are rather “shallow,” as
it was not originally designed to perform search over WAGs.
This slightly higher build time in s-WAG is compensated by
its very efficient query processing time (results in Table 4).
For the query processing time, both WAG-ray and s-WAG
scale well, under varying graph size, query size, number of
returned results, or query selectivity and weights. However,
S—WAG outperforms WAG—-ray consistently in query process-
ing time, irrespective of the sparsity of the weighted attribute
matrix. The difference in query processing time is the highest

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

5

' / s .___./. 10 g—
5
H «0=AVG-QPT(S- o8
23 o T4 =S=Avg-QPTIS-WAG) 2 “®=Avg-QPT(S-WAG)
= WAG) 3 =
5 £, =®=Avg-QPT(WAG-ray) 5
5 q 1 8= Ay QPT(WAG-ra
g2 =AY G- o Sy vg-QPT(ray)
< QPT(WAG- Z2 z
1 ray) F__.__*_____.—. 2
1)
0 0 0
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

DBLP-DB: X-axis varies K, no of nodes=5, sparsity =0.52

(a) DBLP-DB

|

AVG-QPT(sec)
crNwEUaN®oB

AVG-QPT(S-
WAG)

AVG-QPT(sec)
=

N

—=AVG-
QPT(WAG-
5 10 15 20 25 ray)
Yahoo! X-axis varies k, no of nodes=5, sparsity =0.52

=

(d) Yahoo!

Youtube: X- axis varies k, no of nodes=5, sparsity 0.42

(b) YouTube

Amazon Data: X Axis Varies k, no of nodes=5, sparsity =0.01

(¢) Amazon

\

=8=Avg-QPT(S-WAG)

=®=Avg-QPT(WAG-ray)

5 10 15 20 25
SocialReader: X- axis varies k, no of nodes=5, sparsity 0.6

(e) SocialReader

Fig. 4. Comparison of query processing time between s-WAG and WAG-ray when varying result size k. Number of vertices is
set to 5, and the original sparsity of the respective VW matrices are used. Both algorithms scale linearly with increasing k. s-WAG

outperforms WAG-ray in all the cases.

9
_15 3 40
g = -QPT(s- B =®=Avg-QPT(S-WAG
g AVG-QPT(S-WAG) i 6 =@=Avg-QPT(S-WAG) 3 3 g-QPT(:)
£ e =
10 £s ~o=Aug-QPT(WAG-ray) £
g 8= AV G-QPT(WAG-ray) g A 220 =-®=Ayo-QPT(WAG-ray)
B4 © o
= 23 z
2 10
1 o e®
o o X,
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
DBLP-DB: X-axis varies no of nodes, k=5, sparsity =0.52 Youtube: X- axis varies no of nodes, k=5, sparsity 0.42 Amazon Data: X Axis Varies no of nodes, k=5, sparsity =0.01
(a) DBLP-DB (b) YouTube (c) Amazon
30 2
25
P 20
g2 3 ~8=Avg-QPT(S-WAG)
= 215
315 & ~®=Avg-QPT(WAG-ray)
19 ¢ 10
w0 0=V G-QPT(S-WAG) 2
s 5
. 8=V G-QPT(WAG-ray) .
5 10 15 20 25 5 10 15 20 25
Yahoo! X-axis varies no of nodes, k=5, sparsity =0.52 SocialReader: X- axis varies no of nodes, k=5, sparsity 0.6
(d) Yahoo! (e) SocialReader

Fig. 5. Comparison of query processing time between s-WwaAG and WAG-ray when varying number of query vertices. Result size
k is set to 5, and the original sparsity of the respective W matrices are used. Unlike WAG-ray, s-WAG scales almost linearly with
increasing number of vertices. This observation is most prominent for the Amazon dataset that has a very low sparsity value of

0.01. s-wWAG significantly outperforms WAG-ray in all the cases.

for WAGs with low sparsity (like Amazon), compared to the
ones with high sparsity (such as SocialReader). For further
validation purposes, we conducted a large set of experiments,
where we synthetically varied the sparsity of the weighted
attribute matrix of the underlying WAGs (results in Figure 6).
The impact of sparsity became even more apparent in these
experiments. Specifically, high sparsity in weighted attribute
matrix essentially turns a WAG into a graph with one attribute
per node. In such cases, the difference in query processing time
between s-WAG and WAG-ray reduces considerably. Overall,
considering both build time and query processing time, our ex-
perimental results demonstrate that the combination of 1-WAG
and s—WAG are a better graph search approach than WAG-ray
for WAGs.

Our current implementation uses node degree as a di-

mension while building 1-WAG (other dimensions are the
nodal attributes). This feature allows us to easily perform
degree-biased ranking during search. For example, two nodes
that have exactly the same attribute weights could still be
differentiated, if one has higher degree than the other. With
trivial modifications inside 1-WAG (e.g., the actual nodes can
be sorted in descending degree inside an intermediate node in
I-WAG, such that getNext() always returns the highest degree
node first), the former (i.e., higher degree node) would be
returned before the latter (i.e., the lower degree node) during
the search. For the case of DBLP data, this gives us an easy
solution for ranking a prolific author higher than a non-prolific
author (who may be a fresh PhD graduate). Furthermore,
there exists an easy extension to handle additional query
constraints inside 1-WAG. For example, if the query contains

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

IS

=®=AVG-QPT(S-WAG)

PO

@#SAVG-QPT(WAG-ray)

-QPT(Sec)
Avg-Qpt(Sec)
w

AVG:
o kN

0
0.72

0.52
DBLP-DB: x-axis varies sparsity, no of nodes=5, k=5

0.32 0.42 0.62 0.42 0.52 0.62

(2) DBLP-DB
¢ =AYV G-QPT(S-WAG)

6 =®=AVG-QPT(WAG-ray)

4

AVG-QPT(sec)

2

0
052 0.57 0.62 0.67
Yahoo! X-axis varies sparsity, no of nodes=5, k=3

(d) Yahoo!

Youtube: X- axis varies sparsity, no of nodes =5, k=5

(b) YouTube

=®=Avg-QPT(S-WAG) =0=AVG-QPT(S-WAG)

=®=Avg-QPT(WAG-ray) == Avg-QPT(WAG-ray)

AVG-QPT(Sec)

0 o1 02 03 04 05 06 07
Amazon Data:X-axis varies Sparsity, no of nodes = 5, k=5

0.82 0.83

(c) Amazon

'\.—-.\,\‘

fA/f/ ~8=Avg-QPT(S-WAG)

=®=pug-QPT(WAG-ray)

AVG-QPT(sec)
ok N ow s U oo N

06 061 063 065 067
SocialReader: X-axis varies sparsity, no of nodes=5, k=5

(e) SocialReader

Fig. 6. Comparison of query processing time between s-WAG and WAG-ray when varying sparsity. Result size k is set to 5, and the
number of vertices in the query is 5. With increasing sparsity, WAG-ray processes queries with less time, whereas s-WAG requires
more time to process queries on extremely sparse WAGs. However for the larger graphs with millions of vertices and edges, s-WAG

outperforms WAG-ray under any sparsity value.

@ Avg-QPT(S-
WAG)

iy
QPT(WAG-
ray)

01 02 o
DBLP-DB: X-axis vai

o=Avg-
QPT(S-
WAG)

AEQPTO)
PSRN
Avg_QPT(sec)
£
HE
5

Avg-
QPT(W
AG-ray)

ty, number of nodes

(a) DBLP-DB Varying Selectivity (b) Yahoo! Varying Selectivity

=Avg-QPT(S-
WAG)

Avg-
QPT(WAG-
ray)

(c) DBLP-DB Varying Weight (d) Yahoo! Varying Weight

Fig. 7. Comparison of query processing time between s-WAG and WAG-ray when query selectivity and nodes weights are varied.
Number of vertices is set to 5, and the original sparsity of the respective YW matrices are used. s-WAG outperforms WAG-ray in all
the cases. The maximum difference in query processing is observed for the Amazon dataset, which has a very small sparsity value

of 0.01. This demonstrates the effectiveness of s—-WAG.

clustering coefficient [29] or PageRank [18] constraints, each
of these additional properties could be infused as an additional
dimension inside 1-WAG. After that, s—WAG will not require
any further modifications to return results that match these
additional constraints as well. At the same time, I-WAG
could be extended to consider heterogeneous attributes as
it is commonly seen in knowledge graphs with appropriate
adaptations in the ranking function. The 1-WAG and s-WAG
will remain unaltered after that. An interesting question here
is how to extend our work for time evolving WAGs, which
involves designing 1-WAG that is updated efficiently. We
realize that updates in the attribute-weights of the nodes or
in the graph structure (e.g., addition and.or deletion of nodes
and/or edges) could be easily handled with incremental index
maintenance by allowing insert() and delete() operations on the
nodes and the edges in 1-WAG. Of course, if the underlying
WAG changes too much, it is better to build everything from
scratch.

8 RELATED WORK

To the best of our knowledge, ours is the first work towards
graph search on weighted attribute graphs (WAGs). Next,
we compare and contrast our work with existing literature

on graph search, pattern matching in graphs, graph indexing,
keyword search on databases, and other related tasks.

Graph Search and Graph Pattern Matching: The lit-
erature here is extensive [28], [4], [40], [27], [7], [16], [39],
[34]. What sets our work apart is that our graphs have multiple
weighted attributes on their nodes. Table 5 provides a compar-
ative list between previous works and s—-WAG. Tong et al. [28]
propose a pattern matching problem over a large directed
graph (based on reachability constraints) and a corresponding
approximate matching algorithm to select the best set of
patterns when an exact match is not possible, considering one
attribute per node. Subsequently, Zou et al. [40] extend the
problem by designing constraints on distance instead of reach-
ability and design algorithms for that problem. Our problem
is tangentially different due to the existence of weights over
vertex attributes.

Top-k pattern matching problems are studied in [39], [34].
However, these works do not consider attributes on the nodes.
Therefore, the proposed algorithms are primarily limited to
pattern matching over structure, and do not lend an easy
extension for our problem. A comprehensive survey describing
variations among different graph matching problems, general-
and specific-solution approaches, and evaluation techniques

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

can be found in [8].

Tian & Patel (2008)
Zou, et. al. (2007)
Zeng, et. al. (2012)

Graphs without attributes

Graphs with single attribute Tong et al. (2007)

Cheng, et al. (2008)
Kahn et al. (2011)
Zhu et al. (2011)

S—-WAG

Graphs with multiple
weighted attributes (i.e., WAGs)

TABLE 5
Various graph search approaches. Only s-WAG considers the
problem of search on WAGs.

Keyword Search on Databases: The database literature
has extensively studied the problem of keyword search over
relational databases [1], [14]. Fundamentally, we consider
a different problem here, since search on WAGs needs to
consider the structural matching of the input graph, which the
former body of works does not need to consider. Therefore,
the algorithms suggested for the former problem do not lend
themselves to graph search on WAGs.

Unified similarity measures to consider structural and
attribute match: In [28], the similarity measures of a pattern
query with a graph that has one attribute per node is defined
in a unified manner, considering reachability constraints using
random-walk-with-restart probabilities. A recent work [37]
studies the graph clustering problem, where nodes can have
multiple attributes with respective weights, and a unified
similarity measure is defined considering both structural and
attribute properties akin to that of [28]. While the clustering
problem studied in [37] does not lend itself to perform graph
search, we do note that in our experimental study, we have
implemented WAG—-ray, which is an extension of [28] using
a unified distance measure considering structural match and
multiple node attributes. As it appears, the unified distance
measure in WAG-ray is exactly same as that of [37].

Graph Indexing: Given a graph database, graph indexing
techniques aim at indexing the graphs based on the frequent
substructures present in them [38], [33], [31]. To that end,
GraphGrep [22] is a famous representative of the path-based
indexing approaches. GraphGrep enumerates all existing paths
up to a certain length [, in a graph database G, then selects
these paths as indexing features. In comparison to a path-
based indexing approach, Yan et al. [32] use graphs as basic
indexing features, which is often referred to as a graph-based
indexing approach. Later on, Zhao et al. [36] describe tree-
based indexing features and demonstrate how these features
can circumvent the disadvantages that are present in the
previous two approaches. Our work is different in principle,
since we wish to perform fast best-effort graph search when
the vertices have multiple attributes with varying weights.

Inference Queries in Graphical Models: A probabilis-
tic database [6] may exhibit tuple-existence uncertainty, or
attribute-value uncertainty, or a combination of both. Kanagal
and Deshpande [15] propose efficient indexing schemes on
correlated probabilistic databases. The nodal attribute weights
in WAGs bear resemblance with attribute-value uncertainly.
However, we consider the problem in the context of graphs,

and the existence of edges between the nodes makes our
model significantly different from the problems related to
probabilistic databases.

Efficiently evaluating inference queries [5] has been a
major research area in the probabilistic reasoning community.
Observe that, our problem is different in nature. Unlike the
former body of work, the existence of an edge in our weighted
attribute graph is not probabilistic and, furthermore, the nodes
of a WAG contain multiple weighted attributes.

OLAP in Multidimensional graphs: Zhao et al. [35] pro-
pose OLAP functionalities in multidimensional graphs. They
present Graph Cube: an aggregate graph within every possible
multidimensional space, by taking into account both attribute
aggregation and structural summarization of the graphs. While
Graph Cube is designed only to tackle OLAP queries, our
I-WAG structure is useful in answering any subgraph query
on WAGs. Unlike Zhao et al.’s work [35], the vertices in our
problem contain multiple attribute weights, which make our
problem significantly different in principle.

Other work: Search in graphs, particularly social networks,
is an active area of research (e.g., [26], [25]), since vertices
with weighted attributes arise naturally.

Our work has the potential to help in analyses that aim to
understand graphs with vertex attributes [19], [20]; or work
that leverages such graphs for some particular purpose [10].
Of particular relevance here are recommendations based on
social network graphs [30]. In general, heterogeneous graphs
[23] (which may have attributes or labels associated with both
nodes as well as edges) arise in countless applications; our
work focuses in particular on efficient search in graphs with
multiple weighted vertex-attributes.

9 CONCLUSIONS

We define Weighted Attribute Graphs (WAGs), which can
model a wide range of data arising in diverse scenarios and
applications; and study the problem of graph search on WAGs.
Although, as we prove, finding the optimal answer for a given
graph search on a WAG is NP-complete, we introduce a three-
part approach—consisting of R-WAG, 1-WAG, and s-WAG—
that can perform fast best-effort search on WAGs. 1-WAG
produces a novel hybrid index structure that incorporates
weighted attributes, structural features, and the graph structure.
S—-WAG uses a novel algorithm to efficiently return the best
answers to a graph query. R—WAG ranks the results based on a
unified measure of both weighted-attribute and graph-structure
divergences. We demonstrate the effectiveness and scalability
of our approach based on extensive experiments on real-world
data, exhibiting up to 7x better query response times.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for
keyword-based search over relational databases. In ICDE, 2002.

[2] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed
membership stochastic blockmodels. JMLR, 9:1981-2014, 2008.

[3] S.-H. Cha. Comprehensive survey on distance/similarity measures
between probability density functions. Int’l J. of Mathematical Models
and Methods in Applied Sciences, 1(4):300-307, 2007.

[4] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast graph pattern
matching. In /ICDE, 2008.

[5] R. G. Cowell, A. P. David, S. L. Lauritzen, and D. J. Spiegelhalter.
Probabilistic Networks and Expert Systems. Springer, 1999.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

(6]
(71
(8]
(91
[10]

(11]
[12]

[13]

[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]
(23]
[24]
[25]

[26]

[27]

(28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]

N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. VLDB, 16(4):523-544, 2007.

W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern
matching: From intractable to polynomial time. VLDB, 2010.

B. Gallagher. Matching structure and semantics: A survey on graph-
based pattern matching. In AAAI Fall Symposia, pages 45-53, 2006.
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. 1979.

S. Ghosh, N. K. Sharma, F. Benevenuto, N. Ganguly, and P. K. Gum-
madi. Cognos: Crowdsourcing search for topic experts in microblogs.
In SIGIR, pages 575-590, 2012.

S. Gilpin, T. Eliassi-Rad, and I. Davidson. Guided learning for role
discovery: Framework, algorithms, and applications. In KDD, 2013.
A. Guttman. R-trees: A dynamic index structure for spatial searching.
In SIGMOD, pages 47-57, 1984.

K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu,
L. Akoglu, D. Koutra, C. Faloutsos, and L. Li. Rolx: structural role
extraction & mining in large graphs. In KDD, 2012.

V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in
relational databases. In VLDB, pages 670-681, 2002.

B. Kanagal and A. Deshpande. Indexing correlated probabilistic
databases. In SIGMOD, pages 455468, 2009.

A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao.
Neighborhood based fast graph search in large networks. In SIGMOD,
pages 901-912, 2011.

H. Li, Z. Nie, W.-C. Lee, C. L. Giles, and J.-R. Wen. Scalable
community discovery on textual data with relations. In CIKM, 2008.
L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: bringing order to the web. Technical Report SIDL-WP-1999-
0120, InfoLab, Stanford University, Stanford, CA, 1999.

D. Quercia, L. Capra, and J. Crowcroft. The social world of Twitter:
Topics, geography, and emotions. In ICWSM, pages 298-305, 2012.
D. Quercia, R. Lambiotte, D. Stillwell, M. Kosinski, and J. Crowcroft.
The personality of popular Facebook users. In CSCW, pages 955-964,
2012.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
In SIGMOD, pages 71-79, 1995.

D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications
of tree and graph searching. In PODS, 2002.

Y. Sun and J. Han. Mining Heterogeneous Information Networks:
Principles and Methodologies. Morgan & Claypool Publishers, 2012.
L. J. Taneja. Generalized Information Measures and Their Applications.
www.mtm.ufsc.br/ taneja/book/book.html, 2001.

J. Tang, S. Wu, B. Gao, and Y. Wan. Topic-level social network search.
In KDD, pages 769-772, 2011.

J. Tang, J. Zhang, R. Jin, Z. Yang, K. Cai, L. Zhang, and Z. Su. Topic
level expertise search over heterogeneous networks. MLJ, 82(2):211-
237, 2011.

Y. Tian and J. M. Patel. Tale: A tool for approximate large graph
matching. In /CDE, pages 963-972, 2008.

H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast best-effort
pattern matching in large attributed graphs. In KDD, pages 737-746,
2007.

D. J. Watts and S. H. Strogatz. Collective dynamics of small-
worldnetworks. Nature, 393(6684):440-442, 1998.

S. Wu, J. Sun, and J. Tang. Patent partner recommendation in enterprise
social networks. In WSDM, pages 43-52, 2013.

Y. Xie and P. S. Yu. CP-Index: On the efficient indexing of large graphs.
In CIKM, pages 1795-1804, 2011.

X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based
approach. In SIGMOD, pages 335-346, 2004.

J. Yang, S. Zhang, and W. Jin. Delta: Indexing and querying multi-
labeled graphs. In CIKM, pages 1765-1774, 2011.

X. Zeng, J. Cheng, J. X. Yu, and S. Feng. Top-k graph pattern matching:
A twig query approach. In WAIM, pages 284-295, 2012.

P. Zhao, X. Li, D. Xin, and J. Han. Graph cube: on warehousing and
olap multidimensional networks. In SIGMOD, 2011.

P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: Tree + delta >= graph.
In VLDB, pages 938-949, 2007.

Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on struc-
tural/attribute similarities. VLDB, 2(1):718-729, Aug. 2009.

Y. Zhu, L. Qin, J. X. Yu, Y. Ke, and X. Lin. High efficiency and quality:
Large graphs matching. In CIKM, pages 1755-1764, 2011.

L. Zou, L. Chen, and Y. Lu. Top-k subgraph matching query in a large
graph. In CIKM Ph.D. Workshop, pages 139-146, 2007.

L. Zou, L. Chen, and M. T. Ozsu. Distancejoin: Pattern match query in
a large graph database. VLDB, 2(1):886-897, 2009.

Senjuti Basu Roy is an Assistant Professor
at the Institute of Technology at the University
of Washington Tacoma. Prior to joining UW in
2012, she was a postdoctoral fellow at DIMACS
at Rutgers University. Senjuti received her Ph.D.
in Computer Science from the University of
Texas at Arlington in 2011.

Tina Eliassi-Rad is an Associate Professor of
Computer Science at Rutgers University. Before
joining academia, she was a Member of Techni-
cal Staff and Principal Investigator at Lawrence
Livermore National Laboratory. She earned her
Ph.D. in Computer Sciences (with a minor in
Mathematical Statistics) at the University of
Wisconsin-Madison.

Spiros Papadimitriou is an Assistant Profes-
sor at the Department of Management Science
& Information Systems at Rutgers Business
School. Previously, he was a research scientist
at Google, and a research staff member at IBM
Research. He obtained his MSc and PhD de-
grees from Carnegie Mellon University; and was
a Siebel scholarship recipient in 2005.

