
Torres et al.

RESEARCH

Non-backtracking Cycles: Length Spectrum

Theory and Graph Mining Applications
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Abstract

Graph distance and graph embedding are two fundamental tasks in graph mining.

For graph distance, determining the structural dissimilarity between networks is

an ill-defined problem, as there is no canonical way to compare two networks.

Indeed, many of the existing approaches for network comparison differ in their

heuristics, efficiency, interpretability, and theoretical soundness. Thus, having a

notion of distance that is built on theoretically robust first principles and that is

interpretable with respect to features ubiquitous in complex networks would allow

for a meaningful comparison between different networks. For graph embedding,

many of the popular methods are stochastic and depend on black-box models

such as deep networks. Regardless of their high performance, this makes their

results difficult to analyze which hinders their usefulness in the development of a

coherent theory of complex networks. Here we rely on the theory of the length

spectrum function from algebraic topology, and its relationship to the

non-backtracking cycles of a graph, in order to introduce two new techniques:

Non-Backtracking Spectral Distance (NBD) for measuring the distance between

undirected, unweighted graphs, and Non-Backtracking Embedding Dimensions

(NBED) for finding a graph embedding in low-dimensional space. Both

techniques are interpretable in terms of features of complex networks such as

presence of hubs, triangles, and communities. We showcase the ability of NBD to

discriminate between networks in both real and synthetic data sets, as well as the

potential of NBED to perform anomaly detection. By taking a topological

interpretation of non-backtracking cycles, this work presents a novel application

of topological data analysis to the study of complex networks.

Keywords: graph distance; graph embedding; algebraic topology; length

spectrum
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1 Introduction

As the network science literature continues to expand and scientists compile more

examples of real life networked data sets coming from an ever growing range of

domains [1, 2], there is a need to develop methods to compare complex networks,

both within and across domains. Many such graph distance measures have been

proposed [3, 4, 5, 6, 7, 8, 9, 10, 11, 12], though they vary in the features they

use for comparison, their interpretability in terms of structural features of complex

networks, computational costs, as well as in the discriminatory power of the resulting

distance. This reflects the fact that complex networks represent a wide variety

of systems whose structure and dynamics are difficult to encapsulate in a single

distance score. For the purpose of providing a principled, interpretable, efficient

and effective notion of distance, we turn to the length spectrum function. The length

spectrum function can be defined on a broad class of metric spaces that includes

Riemannian manifolds and graphs. The discriminatory power of the length spectrum

is well known in other contexts: it can distinguish certain one-dimensional metric

spaces up to isometry [13], and it determines the Laplacian spectrum in the case of

closed hyperbolic surfaces [14]. However, it is not clear if this discriminatory power

is also present in the case of complex networks. Accordingly, we present a study on

the following question: is the length spectrum function useful for the comparison of

complex networks?

We answer this question in the positive by introducing the Non-Backtracking

Spectral Distance (NBD): a principled, interpretable, efficient, and effective measure

that quantifies the distance between two undirected, unweighted networks. NBD

has several desirable properties. First, NBD is based on the theory of the length

spectrum and the set of non-backtracking cycles of a graph (a non-backtracking

cycle is a closed walk that does not retrace any edges immediately after traversing

them); these provide the theoretical background of our method. Second, NBD is

interpretable in terms of features of complex networks such as existence of hubs and

triangles. This helps in the interpretation and visualization of distance scores yielded

by NBD. Third, NBD is more computationally efficient than other comparable

methods. Indeed, NBD depends only on the computation of a few of the largest

eigenvalues of the non-backtracking matrix of a graph, which requires only slightly

more computational time than the spectral decomposition of the adjacency matrix.
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Figure 1 Non-backtracking eigenvalues of random graphs. Left: From six different random

graph models – Erdös-Rényi (ER), Barabási-Albert (BA), Stochastic Kronecker Graphs (KR),

Configuration Model with power law degree distribution (CM), Watts-Strogatz (WS), Hyperbolic

Graphs (HG) – we generate 50 graphs. From each of those 300 (= 6× 50) graphs, we plot the

largest r = 200 non-backtracking eigenvalues on the complex plane. To make the plot more

readable, we show only eigenvalues close to the origin. All graphs have n = 5× 104 nodes and

average degree approximately 〈k〉 = 15. Right: For each graph used in the left panel, we take its

eigenvalues as a high-dimensional feature vector and apply UMAP over this set of 300 vectors to

compute a 2-dimensional projection. For UMAP, we use a neighborhood of 75 data points and

Canberra distance to get a more global view of the data set.

Fourth, we have extensive empirical evidence that demonstrates the effectiveness of

NBD at distinguishing real and synthetic networks.

NBD is intimately related to the eigenvalues of the non-backtracking matrix,

which serve as a proxy for the length spectrum of a graph (see Section 4.1). Moti-

vated by the usefulness of the eigenvalues of the non-backtracking matrix, we then

turn our focus to its eigenvectors. We discuss the potential of using the eigenvectors

as a graph embedding technique, which we refer to as Non-Backtracking Embedding

Dimensions (or NBED for short). This technique computes a low dimensional em-

bedding of each directed edge in a graph. We show that the peculiar visualizations

yielded by NBED are particularly apt at providing a rich visualization of the em-

bedded network, and use the patterns found therein to perform anomaly detection

on the Enron email corpus [15].

The contributions of this paper are as follows. By highlighting the topologi-

cal interpretation of the non-backtracking cycles of a graph, we propose Non-

Backtracking Spectral Distance (NBD) as a novel graph distance method, and
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discuss the potential of Non-Backtracking Embedding Dimensions (NBED) as a

promising embedding technique. Along the way, we present an efficient algorithm

to compute the non-backtracking matrix, and discuss the data visualization capa-

bilities of its complex eigenvalues (see Figure 1) and eigenvectors (Figure 12). With

this work we also release publicly available source code that implements NBD,

NBED and the related matrix computations [16].

The rest of this paper is structured as follows. Section 2 provides necessary back-

ground information on the length spectrum, non-backtracking cycles, and the non-

backtracking matrix. In Section 3 we discuss previous investigations related to ours.

Section 4 explains the connection between these objects, as well as a discussion of

the properties of the non-backtracking matrix that make it relevant for the study

of complex networks. It also presents our efficient algorithm to compute it. Sec-

tion 5 presents our distance method NBD and provides experimental evidence of its

performance by comparing it to other distance techniques. In Section 6 we discuss

our embedding method NBED based on the eigenvectors of the non-backtracking

matrix and provide extensive visual analysis of the resulting edge embeddings, as

well as mention its shortcomings and necessary future lines of study. We conclude

in Section 8 with a discussion of limitations and future work.

2 Background

Here we introduce two theoretical constructions: the length spectrum of a metric

space and the set of non-backtracking cycles of a graph. Our analysis pivots on the

fact that the latter is intimately related to a particular subset of the (domain of the)

former. For a list of all symbols and abbreviations used in this work, see Table 1.

2.1 Length Spectrum

Consider a metric space X and a point p ∈ X. A closed curve that goes through

p is called a loop, and p is called its basepoint. Two loops are homotopic to one

another relative to a given basepoint when there exists a continuous transformation

from one to the other that fixes the basepoint. The fundamental group of X with

basepoint p is denoted by π1(X, p) and is defined as the first homotopy group of X,

i.e., the set of all loops in X that go through p, under the equivalence relation of

based homotopy. An element of the fundamental group is called a homotopy class.

If a homotopy class contains the loop c, we denote it as [c]. The group operation is
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Symbol Definition

π1(X, p) the fundamental group of X with basepoint p

[c] homotopy class of loop c

L,L′ length spectrum function, relaxed length spectrum

Conv(X) if X is a graph, Conv(X) is its 2-core

G = (V,E) an undirected graph with node set V and edge set E

n,m number of nodes and number of edges of a graph G

e, e−1 a directed edge e = u→ v and its inverse e−1 = v → u

NBC non-backtracking cycle, in which no edge is followed by its inverse

B 2m× 2m non-backtracking matrix of a graph

B′ 2n× 2n matrix whose eigenvalues are the same as those of B, save for ±1

λk = ak + ibk k-th largest eigenvalue, in magnitude, of B

Re(λ), Im(λ) real and imaginary parts of the complex number λ

P,Q n× 2m directed incidence matrices of a graph

pk the fraction of a graphs’ nodes with degree k

γ the degree exponent in the case when pk ∼ k−γ

〈ki〉 i-th moment of the degree distribution pk

deg(u) degree of node u

nnz(A) number of non-zero elements of binary matrix A

NBD(G,H) non-backtracking distance between graphs G and H

d({λk}, {µk}) distance between eigenvalues λk and eigenvalues µk

r number of eigenvalues computed from one graph

ρ =
√
λ1 magnitude threshold for eigenvalue computation

r0 number of eigenvalues whose magnitude is greater than ρ

σ spread parameter of the RBF kernel

Table 1 Notation used in this work.

the product of two homotopy classes, defined as the concatenation of two of their

representative loops and written multiplicatively as [c1][c2] whenever [c1] and [c2]

are elements of π1(X, p). Since c1 starts at the same node at which c2 ends, they

can be traversed one after the other, which uniquely defines another based loop.

A conjugacy class of the fundamental group is a set C of homotopy classes such

that for any two classes [c1], [c2] ∈ C there exists a third class [g] that satisfies

[c1] = [g−1][c2][g]. Here, the inverse of the loop g is defined as the same loop

traversed in reverse. Closed curves without a distinguished basepoint are called

free loops, and they correspond to conjugacy classes of π1(X, p). For an example

of conjugacy classes of the fundamental group of a graph G, see Figure 2. A well-

known fact of homotopy theory is that if X is path-connected (i.e., if any two

points can be connected through a continuous curve in X) then π1(X, p) is unique

up to isomorphism, regardless of basepoint p. In the present work we only consider

connected graphs, hence, we simply write π1(X) when there is no ambiguity. For

more on homotopy, we refer the interested reader to [17, 18].
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[h1] = abcda-1

[h2] = edbce-1

[g] = ad-1e-1

[g-1][h1][g] = (ad-1e-1)-1abcda-1(ad-1e-1)
         = eda-1abcda-1ad-1e-1 
         = edbcdd-1e-1

         = edbce-1

               = [h2]
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Figure 2 Conjugate homotopy classes in a graph. Left: In an undirected graph G we label some

directed edges a, b, c, d and e. We use the red node as basepoint to construct homotopy classes.

Center: Three homotopy classes [h1], [h2], [g] each with a sequence of edges that form a cycle of

minimal length. Right: Proof that [h1] and [h2] are conjugate via [g]. Each time an edge is

followed by its inverse we remove them as they are homotopically trivial. By doing so, we reduce

the cycle [g−1][h1][g] to one that is homotopic to it and has minimal-length, namely [h2].

The length spectrum L is a function on π1(X) which assigns to each homotopy

class of loops the infimum length among all of the representatives in its conjugacy

class.[1] Note, importantly, that the definition of length of a homotopy class considers

the length of those loops not only in the homotopy class itself, but in all other

conjugate classes. In the case of compact geodesic spaces, such as finite metric

graphs, this infimum is always achieved. For a finite graph where each edge has

length one, the value of L on a homotopy class then equals the number of edges

contained in the length-minimizing loop. That is, for a graph G = (V,E), v ∈ V , if

[c] ∈ π1(G, v) and c achieves the minimum length k in all classes conjugate to [c],

we define L([c]) = k.

Our interest in the length spectrum is supported by the two following facts. First,

graphs are aspherical. More precisely, the underlying topological space of any graph

is aspherical, i.e., all of its homotopy groups of dimension greater than one are

trivial.[2] Therefore, it is logical to study the only non-trivial homotopy group, the

fundamental group π1(G). Second, Constantine and Lafont [13] showed that the

[1]The definition presented here is also known as marked length spectrum. An alter-

native definition of the (unmarked) length spectrum does not depend on π1; see for

example [14].
[2]This follows from G being homotopy equivalent to a bouquet of k circles, where k

is the rank of the fundamental group of G. The universal covering of a bouquet of

circles is contractible, which is equivalent to the space being aspherical. (See [18].)
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length spectrum of a graph determines a certain subset of it up to isomorphism.

Thus, we aim to determine when two graphs are close to each other by comparing

their length spectra relying on the main theorem of [13]. For completeness, we briefly

mention it here; it is known as marked length spectrum rigidity.

Theorem 1 (Constantine-Lafont [13]) For a metric space X define Conv(X) as

the minimal set to which X retracts by deformation. Let X1, X2 be a pair of compact,

non-contractible, geodesic spaces of topological dimension one. If the marked length

spectra of X1 and X2 are the same, then Conv(X1) is isometric to Conv(X2).

When G1, G2 are graphs, Conv(Gi), i = 1, 2, corresponds to the subgraph re-

sulting from iteratively removing nodes of degree 1 from Gi, which is precisely the

2-core of Gi [19]. Equivalently, the 2-core of G is the maximal subgraph in which

all vertices have degree at least 2. Thus, Theorem 1 states that when two graphs

have the same length spectrum, their 2-cores are isomorphic.

Given these results, it is natural to use the length spectrum as the basis of a mea-

sure of graph distance. Concretely, given two graphs, we aim to efficiently quantify

how far their 2-cores are from being isomorphic by measuring the distance between

their length spectra. In Section 4.1, we explain our approach at implementing a

computationally feasible solution for this problem.

2.2 Non-Backtracking Cycles

Consider an undirected, unweighted graph G = (V,E) and suppose |E| = m. For

an undirected edge e = {u, v} ∈ E, we write u → v and v → u for its two possible

orientations, and define ~E as the set of all 2m directed edges. Given a directed

edge e = u → v ∈ ~E, define e−1 as the same edge traversed in the inverse order,

e−1 = v → u. A path in G is a sequence of directed edges e1e2...ek such that if

ei = ui → vi then vi = ui+1 for i = 1, ..., k − 1. Here, k is called length of the

path. A path is closed if vk = u1. A path is called non-backtracking when an edge

is never followed by its inverse, ei+1 6= e−1i for all i. A closed path is also called a
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cycle. A cycle is a non-backtracking cycle (or NBC for short) when it is a closed

non-backtracking path and, in addition, ek 6= e−11 .[3]

The non-backtracking matrix B is a 2m×2m matrix whose rows and columns are

indexed by directed edges. For two edges u→ v and k → l, B is given by

Bk→l,u→v = δvk(1− δul), (1)

where δuv is the Kronecker delta. Thus, there is a 1 in the entry indexed by row

k → l and column u→ v when u 6= l and v = k, and a 0 otherwise. Intuitively, one

can interpret the B matrix as the (unnormalized) transition matrix of a random

walker that does not perform backtracks: the entry at row k → l and column u→ v

is positive if and only if a walker can move from node u to node v (which equals

node k) and then to l, without going back to u.

Importantly, NBCs are topologically relevant because backtracking edges are ho-

motopically trivial, that is, the length−2 cycle u → v, v → u can always be con-

tracted to a point [20]. Indeed, in Figure 2 we removed edges are precisely those

that form backtracks.

Observe that the matrix B tracks each pair of incident edges that do not comprise

a backtrack. As a consequence we have the following result.

Lemma 1 Bpk→l,i→j equals the number of non-backtracking paths of length p+ 1

that start with edge i→ j and end with edge k → l. Moreover, tr(Bp) is proportional

to the number of closed non-backtracking paths (i.e., NBCs) of length p in G.

Proof The first fact is reminiscent of the well-known fact that Apuv gives the number

of paths that start at node u and end at node v, for any u, v ∈ G, where A is the

adjacency matrix of G. The proof is the same as the proof of this latter fact, so

we omit the details for brevity. The only difference is that Bp gives the number of

non-backtracking paths of length p+1, while Ap gives the number of paths of length

p. To see why, notice that if the entry Bk→l,i→j is positive, then the length−2 path

i→ j → l must exist and it cannot contain any backtracks. Accordingly, if B2
k→l,i→j

[3]Other authors reserve the use of the term cycle for special cases of closed paths

such as the set of simple cycles, which are closed paths that do not intersect each

other. In this work we use cycle and closed path interchangeably.
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is positive then the length−3 path i → j → k → l must be non-backtracking. It

remains to show that tr(Bp) is proportional to the number of NBCs of length k,

and not the number of NBCs of length p + 1 as one may think from the previous

paragraph. Suppose a → b → c → a is a valid closed non-backtracking path, that

is, the nodes a, b, c form a triangle. In this case, B2
c→a,a→b must be positive, as

must be B3
a→b,a→b. The latter represents the existence of some node c such that

the path a→ b→ c→ a→ b exists and is non-backtracking, or, equivalently, that

a→ b→ c→ a is a non-backtracking cycle. Note that B3
b→c,b→c and B3

c→a,c→a are

also positive and all signal the existence of the same triangle a, b, c. Thus the sum of

all diagonal elements tr(B3) counts every triangle exactly six times, since there are

three edges each with two possible orientations. A proof by induction shows that

the above argument holds for any p.

The second claim of Lemma 1 will be fundamental in our later exposition. We

prefer to count NBCs of length p using tr(Bp), as opposed to the entries of Bp−1,

because of the well-known fact that tr(Bp) =
∑
i λ

p
i , for any square matrix B, and

where each λi is an eigenvalue of B [21]. Also of importance is the fact that B is not

symmetric, and hence its eigenvalues are, in general, complex numbers. Since B is a

real matrix, all of its eigenvalues come in conjugated pairs: if a+ ib is an eigenvalue

then so is a− ib, where i is the imaginary unit. This implies that we can write the

above equation as tr(Bp) =
∑
i λ

p
i =

∑
i Re(λpi ), where Re(z) is the real part of a

complex number, since the imaginary part of conjugated eigenvalues cancel out. In

the rest of this work we refer to B’s eigenvalues as the non-backtracking eigenvalues.

If one is interested in B’s eigenvalues rather than in the matrix itself, one may use

the so-called Ihara determinant formula [22, 23], which states that the eigenvalues

of B different than ±1 are also the eigenvalues of the 2n× 2n block matrix

B′ =

A I −D

I 0

 (2)

where A is the adjacency matrix, D is the diagonal matrix with the node degrees,

and I is the n× n identity matrix.



Torres et al. Page 10 of 46

3 Related work

Hashimoto [22] discussed the non-backtracking cycles of a graph (and the associated

non-backtracking matrix) in relation to the theory of Zeta functions in graphs.

Terras [20] explained the relationship between non-backtracking cycles and the free

homotopy classes of a graph. More recently, the non-backtracking matrix has been

applied to diverse applications such as node centrality [24, 25] and community

detection [26, 27, 28], and to the data mining tasks of clustering [29] and embedding

[30]. In particular, the application to community detection is of special interest

because it was shown that the non-backtracking matrix performs better at spectral

clustering than the Laplacian matrix in some cases [26]. Hence, there is recent

interest in describing the eigenvalue distribution of the non-backtracking matrix

in models such as the Erdős-Rényi random graph and the stochastic block model

[27, 31]. Our work differs from other applied treatments of the non-backtracking

matrix in that we arrive at its eigenvalues from first principles, as a relaxed version of

the length spectrum. Concretely, we use the eigenvalues to compare graphs because

the spectral moments of the non-backtracking matrix describe certain aspects of

the length spectrum (see Section 4). The spectral moments of other matrices (e.g.,

adjacency and Laplacian matrices) also describe structural features of networks

[32, 33].

Many distance methods have been proposed recently [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

This proliferation is due to the fact that there is no definitive way of comparing two

graphs, especially complex networks since they present a vast diversity of structural

features. The methods that are most related to ours fall in two categories: combina-

torial enumeration or estimation of different subgraphs (such as motifs or shortest

paths), or those that depend on spectral properties of some matrix representation

of the network, such as the method Lap from Section 5.3.1.

The topic of embedding has also seen a sharp increase of activity in recent years,

motivated by the ubiquity of machine learning and data mining applications to

structured data sets; see [34, 35] for recent reviews. Our method NBED differs from

most others in that it yields an edge embedding that differentiates the two possible

orientations of an edge. Our focus is in providing an interpretable visual analysis of

the resulting embedding, and on its application to anomaly detection.
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4 Operationalizing the length spectrum

We want to quantify the dissimilarity between two graphs by measuring the dis-

similarity between their length spectra. To do this, there are two main obstacles to

overcome: (i) computing the exact length spectrum of a given graph is not computa-

tionally feasible as it depends on enumerating the length of every NBC, and (ii) it is

not immediately clear how to compare two length spectra functions that come from

two distinct graphs, because they are defined on disjoint domains (the fundamental

groups of the graphs)[4]. In order to overcome these obstacles, we propose the use

of what we call the relaxed length spectrum, denoted by L′, and whose construction

comes in the form of a two-step aggregation of the values of L; see Figure 3 for an

overview of this procedure.

4.1 Relaxed Length Spectrum

The first step of this procedure is to focus on the image of the length spectrum rather

than the domain (i.e., focus on the collection of lengths of cycles). The second step

is to aggregate these values by considering the size of the level sets of either length

spectrum.

Concretely, when comparing two graphs G and H, instead of comparing LG and

LH directly, we compare the number of cycles in G of length 3 with the number of

cycles in H of the same length, as well as the number of cycles of length 4, of length

5, etc, thereby essentially comparing the histogram of values that each L takes.

Theoretically, focusing on this histogram provides a common ground to compare

the two functions. In practice, this aggregation allows us to reduce the amount

of memory needed to store the length spectra because we no longer keep track

of the exact composition of each of the infinitely many (free) homotopy classes.

Instead, we only keep track of the frequency of their lengths. According to this

aggregation, we define the relaxed version of the length spectrum as the set of

points L′ = {(k, n(k)) : k = 1, 2, ..}, where n(k) is the number of conjugacy classes

of π1 (i.e., free homotopy classes) of length k.

The major downside of removing focus from the underlying group structure and

shifting it towards (the histogram of values in) the image is that we lose information

[4]In [13], the authors need an isomorphism between the fundamental group of the

spaces that are being compared, which is also computationally prohibitive.
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Figure 3 Aggregating the values of the length spectrum. a) A graph G with two nodes

highlighted in red and blue. These two nodes are used as basepoints to construct two versions of

the fundamental group. b) The set of all cycles based at the red node (left) and blue node (right).

For either set of cycles, we encircle together those that are homotopy equivalent, thus forming a

homotopy class. We annotate each class with its length, and we highlight the representative with

minimal length. Note that the lengths of corresponding cycles (those that share all nodes except

for the basepoints) can change when the basepoints change. c) We have kept only the highlighted

representative in each class in b) and encircled together those that are conjugate. In each

conjugacy class, we highlight the (part of) each cycle that corresponds to the free homotopy loop.

d) By taking one representative of each conjugacy class, and ignoring basepoints, we arrive at the

free homotopy classes, or equivalently, at the set of non-backtracking cycles. We annotate each

cycle with its length. We arrive at the same set regardless of the basepoint. The ellipses inside the

closed curves mean that there are infinitely many more elements in each set. The ellipses outside

the curves mean that there are infinitely many more classes or cycles.

about the combinatorial composition of each cycle. Indeed, π1(G) holds information

about the number of cycles of a certain length k in G; this information is also stored

in L′. However, the group structure of π1(G) also allows us to know how many of

those cycles of length k are formed by the concatenation of two (three, four, etc.)

cycles of different lengths. This information is lost when considering only the sizes

of level sets of the image, i.e., when considering L′.

The next step makes use of the non-backtracking cycles (NBCs). We rely on NBCs

because the set of conjugacy classes of π1(G) is in bijection with the set of NBCs of

G (see e.g., [20, 22]). In other words, to compute the set L′ we need only account

for the lengths of all NBCs. Indeed, consider the non-backtracking matrix B of G

and recall that tr(Bk) equals the number of NBCs of length k in the graph. This

gives us precisely the set L′ = {(k, tr(Bk))}∞k=1. Recall that tr(Bk) =
∑
i λ

k
i , where

each λi is a non-backtracking eigenvalue. Therefore, the eigenvalues of B contain all
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the information necessary to compute and compare L′. In this way, we can study

the (eigenvalue) spectrum of B, as a proxy for the (length) spectrum of π1.

We have deviated from the original definition of the length spectrum in important

ways. Fortunately, our experiments indicate that L′ contains enough discriminatory

information to distinguish between real and synthetic graphs effectively; see Sec-

tions 5.3.2 and 5.3.5. We discuss this limitation further in our concluding remarks

in Section 8. Beyond experimental results, one may ask if there are theoretical

guarantees that the relaxed version of the length spectrum will keep some of the

discriminatory power of the original. Indeed, even though our inspiration for this

work is partially the main rigidity result of [13], we can still trust the eigenvalue

spectrum of B to be useful when comparing graphs. On the one hand, the spectrum

of B has been found to yield fewer isospectral graph pairs (i.e., non-isomorphic

graphs with the same eigenvalues) than the adjacency and Laplacian matrices in

the case of small graphs [36]. On the other hand, B is tightly related to the theory

of graph zeta functions [22], in particular the Ihara Zeta function, which is known to

determine several graph properties such as girth, number of spanning trees, whether

the graph is bipartite, regular, or a forest, etc [37]. Thus, both as a relaxed version

of the original length spectrum, but also as an object of interest in itself, we find

the eigenvalue spectrum of the non-backtracking matrix B to be an effective means

of determining the dissimilarity between two graphs. For the rest of this work we

focus on the eigenvalues of B and on using them to compare complex networks.

4.2 Computing B

As mentioned previously, the eigenvalues of B different than ±1 are also the eigen-

values of the 2n× 2n block matrix B′ defined in Equation 2. Computing its eigen-

values can then be done with standard computational techniques, and it will not

incur a cost greater than computing the eigenvalues of the adjacency or Laplacian

matrices, as B′ is precisely four times the size of A and it has only 2n more non-zero

entries (see Equation 2). This is what we will do in Section 5 in order to compare

two relaxed length spectra. However, in Section 6 we will need the eigenvectors

of B, which cannot be computed from B′. For this purpose, we now present an

efficient algorithm for computing B. Computing its eigenvectors can then be done

with standard techniques.
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Given a graph with n nodes and m undirected edges in edge list format, define the

n × 2m incidence matrices Px,u→v = δxu and Qx,u→v = δxv, and write C = PTQ.

Observe that Ck→l,u→v = δvk and therefore,

Bk→l,u→v = Ck→l,u→v(1− Cu→v,k→l) (3)

Note that an entry of B may be positive only when the corresponding entry of C is

positive. Therefore, we can compute B in a single iteration over the nonzero entries

of C.

Now, C has a positive entry for each pair of incident edges in the graph, from

which we have the following result.

Lemma 2 Set nnz(C) to be the number of non-zero entries in C, and 〈k2〉 the

second moment of the degree distribution. Then, nnz(C) = n〈k2〉.

Proof This follows by direct computation:
∑
k→l,i→j δkj =

∑
k (
∑
l alk) (

∑
i aik) =

n〈k2〉

Computing P and Q takes O(m) time. Since computing the product of sparse

matrices takes time proportional to the number of positive entries in the result,

computing C takes O(n〈k2〉). Thus we can compute B in time O(m + n〈k2〉). In

the case of a power-law degree distribution with exponent 2 ≤ γ ≤ 3, the runtime

of our algorithm falls between O(m + n) and O(m + n2). Note that if a graph is

given in adjacency list format, one can build B directly from the adjacency list in

time Θ(n〈k2〉 − n〈k〉) by generating a sparse matrix with the appropriate entries

set to 1 in a single iteration over the adjacency list.

4.3 Spectral properties of B

In our experiments we have found that the eigenvalues of B behave nicely with

respect to certain fundamental properties of complex networks such as degree dis-

tribution and triangles. If the theory of the length spectrum justifies the use of

the non-backtracking eigenvalues to compare graphs in general, the properties we

present next justify their use for complex networks in particular.

Lemma 3 We have nnz(B) = n
(
〈k2〉 − 〈k〉

)
.
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Figure 4 Spread along the imaginary axis of non-backtracking eigenvalues. We show the

imaginary part of non-backtracking eigenvalues as a function of heterogeneity of degree

distribution in the configuration model. Given a value of γ, we generated a random degree

sequence that follows pk ∼ k−γ and generated a graph with said degree sequence using the

configuration model. All graphs have n = 5× 104 nodes and average degree 12; 100 graphs

generated for each value of γ.

Proof We directly compute
∑
k→l,i→j δkj(1 − δil) =

∑
k(deg(k) − 1) deg(k) =

n
(
〈k2〉 − 〈k〉

)
.

Contrast this to nnz(A) = n〈k〉 for the adjacency matrix A. As a consequence of

this, we have found experimentally that the larger 〈k2〉, the larger the range of the

non-backtracking eigenvalues along the imaginary axis; see Figure 4.

Next, we turn to B’s eigenvalues and their relation to the number of triangles.

Write λk = ak + ibk ∈ C for the non-backtracking eigenvalues, where i is the imag-

inary unit and k = 1, .., 2m. The number of triangles in a network is proportional

to tr(B3) =
∑
k Re(λ

3
k), which, by a direct application of the binomial theorem,

equals

tr(B3) =

2m∑
k=1

ak(a2k − 3b2k). (4)

In general, the eigenvalues of B with small absolute value tend to fall on a circle

in the complex plane [26, 38, 39, 27]. However, if
∑
k a

2
k is large and

∑
k b

2
k is

small (implying a large number of triangles), the eigenvalues cannot all fall too

close to a circle, since they will need to have different absolute values. Hence, the

more triangles in the graph, the less marked the circular shape of the eigenvalues.
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Another way of saying the same thing is that the more triangles exist in the graph,

the eigenvalues have larger and positive real parts.

4.4 Eigenvalues: visualization

We close this section with a visualization of the non-backtracking eigenvalues. We

choose six different random graph models: Erdös-Rényi (ER) [40, 41], Barabási-

Albert (BA) [42], Stochastic Kronecker Graphs (KR) [43, 44], Configuration Model

with power law degree distribution (CM; pk ∼ k−γ with γ = 2.3) [45], Watts-

Strogatz (WS) [46], Hyperbolic Graphs (HG; γ = 2.3) [47, 48]. From each model,

we generate 50 graphs with n = 10, 000 nodes and approximately 〈k〉 = 15; see

Table 2 for more information about these graphs. For each graph, we plot the

largest r = 200 eigenvalues on the complex plane in Figure 1.

Each model generates eigenvalue distributions presenting different geometric pat-

terns. As expected from the previous section, HG has a less marked circular shape

around the origin since it is the model that generates graphs with the most triangles.

Furthermore, HG also has the largest maximum degree, and therefore its eigenval-

ues have a greater spread along the imaginary axis. We also show in Figure 1 a

low-dimensional projection of the non-backtracking eigenvalues using UMAP [49].

Notice how, even in two dimensions, the non-backtracking eigenvalues are clustered

according to the random graph model they come from. This provides experimen-

tal evidence that the non-backtracking eigenvalues shall be useful when comparing

complex networks. For a more in-depth explanation of the parameters used for

UMAP, see Appendix 1.

5 NBD: Non-backtracking distance

Based on the previous discussion, we propose a method to compute the distance

between two complex networks based on the non-backtracking eigenvalues. In this

Section, we use d to refer to an arbitrary metric defined on subsets of R2. That is,

the distance between two graphs G,H is given by d({λk}, {µk}), where λk, µk are

the eigenvalues of G,H, respectively, which we identify with points in R2 by using

their real and imaginary parts as coordinates. With these notations we are finally

ready to propose the Non-Backtracking Spectral Distance, or NBD for short.
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Table 2 Data sets used in this work. n: number of nodes in the largest connected component; 〈k〉:
average degree; c̄: average clustering coefficient. Left: random graph data sets. We generate 50 graphs

of each data set, for a total of 900 random graphs. Right: real networks, grouped in four categories.

data set n 〈k〉 c̄

BA-1k 1k 13.90 0.05

CM-1k 1k 10.20 0.17

ER-1k 1k 14.99 0.15

HG-1k 997± 2 14.72 0.82

KR-1k 1021± 1 14.54 0.03

WS-1k 1k 14.00 0.67

BA-5k 5k 13.98 0.02

CM-5k 5k 11.40 0.13

ER-5k 5k 15.00 0.00

HG-5k 4982± 8 14.67 0.82

KR-5k 4089± 3 18.27 0.01

WS-5k 5k 14.00 0.67

BA-10k 10k 13.99 0.01

CM-10k 10k 11.97 0.12

ER-10k 10k 14.99 0.00

HG-10k 9958± 15 14.96 0.83

KR-10k 8170± 11 18.32 0.01

WS-10k 10k 14.00 0.67

data set network n 〈k〉 c̄

Online social

(social)

facebook 4k 43.69 0.61

sdot8 77k 14.13 0.06

sdot9 82k 14.18 0.06

epinions 76k 10.69 0.14

twitter 81k 33.02 0.57

wiki 7k 28.32 0.14

Coauthorship

(CA)

AstroPh 19k 21.11 0.63

CondMat 23k 8.08 0.63

GrQc 5k 5.53 0.53

HepPh 12k 19.74 0.61

HepTh 10k 5.26 0.47

Peer-to-peer

file-sharing

(P2P)

P2P04 11k 7.35 0.01

P2P05 9k 7.20 0.01

P2P06 9k 7.23 0.01

P2P08 6k 6.59 0.01

P2P09 8k 6.41 0.01

P2P24 27k 4.93 0.01

P2P25 23k 4.82 0.01

P2P30 36k 4.82 0.01

P2P31 63k 4.73 0.01

Autonomous

systems

(AS)

AS331 11k 4.12 0.30

AS407 11k 4.10 0.29

AS414 11k 4.16 0.30

AS421 11k 4.19 0.30

AS428 11k 4.13 0.29

AS505 11k 4.13 0.29

AS512 11k 4.12 0.29

AS519 11k 4.11 0.29

AS526 11k 4.19 0.30

Definition 1 Consider two graphs G,H, and let {λk}k=rk=1, {µk}k=rk=1, be the r non-

backtracking eigenvalues of largest magnitude of G and H, respectively. We define

the NBD between G and H as NBD(G,H) = d({λk}, {µk}).

Note that in Definition 1 we leave open two important degrees of freedom: the

choice of d and the choice of r. We will discuss the optimal choices for these parame-

ters in the next Section. Regardless of these choices, however, we have the following

results.

Proposition 1 If d is a metric over subsets of R2, then NBD is a pseudo-metric

over the set of graphs.
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Proof NBD inherits several desirable properties from d: non-negativity, symmetry,

and, importantly, the triangle inequality. However, the distance between two distinct

graphs may be zero when they share all of their r largest eigenvalues. Thus, NBD

is not a metric over the space of graphs but a pseudo-metric.

5.1 Computing NBD

Algorithm 1 presents our method to compute the NBD between two graphs. It

makes use of the following fact, which simplifies the computation. It is known (see

e.g. [36]) that the multiplicity of 0 as an eigenvalue of B equals the number of

edges outside of the 2-core of the graph. For example, a tree, whose 2-core is empty,

has all its eigenvalues equal to 0. On the one hand, we could use this valuable

information as part of our method to compare two graphs. On the other hand, the

existence of zero eigenvalues does not change the value of tr(Bk), k ≥ 0, and thus

leaves the relaxed length spectrum L′ = {
(
k, tr(Bk)

)
}k intact. Moreover, iteratively

removing the nodes of degree one (a procedure called “shaving”) reduces the size of

B (or the sparsity of B′; see Equation 2), which makes the computation of non-zero

eigenvalues faster.

Algorithm 1 Non-Backtracking Spectral Distance
Input: Two graphs G,H, distance d, number of eigenvalues r

Output: real number d, distance between G,H

1: G̃, H̃ ← shave(G), shave(H)

2: {λk}k, {µk}k ← the r largest eigenvalues of B′ corresponding to G̃, H̃

3: return d({λi}, {µi})

Given two graphs G,H, we first compute their 2-cores by shaving them, that is,

iteratively removing the nodes of degree 1 until there are none; call the new graphs

G̃ and H̃. Then for each graph, we compute the B′ matrix using Equation 2 to

then compute the largest r eigenvalues. Lastly, we compute the distance d between

the resulting sets of eigenvalues. We proceed to analyze the runtime complexity

of each line of Algorithm 1. Line 1: the shaving step has a worst-case scenario of

O(n2), where n is the number of nodes. Indeed, the shaving algorithm must iterate

two steps until completion: first, identify all nodes of degree 1, and second, remove

those nodes from the graph. For the first step, querying the degree of all nodes

takes O(n) time, while the deletion step takes an amount of time that is linear

in the amount of nodes that are removed at that step. In the worst-case scenario,
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consider a path graph. At each iteration, the degrees of all nodes must be queried,

and exactly two nodes are removed. The algorithm terminates after n/2 steps, at

each of which it must query the degree of all remaining nodes, thus it takes O(n2).

In several classes of complex networks, however, the number of nodes removed by

the algorithm (i.e. those outside the 2-core) will be a small fraction of n. Line 2: the

eigenvalue computation can be done in O(n3) using, for example, power iteration

methods, though its actual runtime will greatly depend on the number of eigenvalues

and the structure of the matrix. Line 3: finally, computing the distance between the

computed eigenvalues depends on which distance is being used; see next Section.

5.2 Choice of distance and dependence on r

Previous works provide evidence for the fact that the majority of the non-

backtracking eigenvalues have magnitude less than ρ =
√
λ1, where λ1 is the largest

eigenvalue (which is guaranteed to be real due to the Perron-Frobenius theorem

since all of B’s entries are real and non-negative). Indeed, in [50] the authors show

that, in the limit of large network size, non-backtracking eigenvalues with magni-

tude larger than ρ occur with probability 0. Therefore, to compare two graphs, we

propose to compute all the eigenvalues that have magnitude larger than ρ. Infor-

mally, this means we are comparing the outliers of the eigenvalue distribution, since

they occur with less probability the larger the network becomes. This provides a

heuristic to choose the value of r.

To test this heuristic, as well as choose the distance d, we perform the follow-

ing experiment. Given two graphs G1 and G2, we compute the largest 1000 non-

backtracking eigenvalues of both graphs. Then, we compute three distance measures

between {λi}r1 and {µi}r1 for increasing values of r. The distances are defined as fol-

lows:

• The Euclidean metric computes the Euclidean distance between the vec-

tors whose elements are the eigenvalues sorted in order of magnitude:

Euclidean({λi}, {µi}) =
√∑

i |λi − µi|2, with |λi| ≥ |λi+1| and |µi| ≥ |µi+1|

for all i. If two eigenvalues have the same magnitude, we use their real parts

to break ties. Computing this distance takes O(r) computations, where r is

the number of eigenvalues.
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• The EMD metric computes the Earth Mover Distance (a.k.a. Wasserstein dis-

tance) [51] which is best understood as follows. Write λk = ak + ibk and

µk = ck + idk for all k. Consider the sets {(ak, bk)}rk=1 and {(ck, dk)}rk=1 as

subsets of R2, and imagine a point mass with weight 1/r at each of these

points. Intuitively, EMD measures the minimum amount of work needed to

move all point masses at the points (ak, bk) to the points (ck, dk). This dis-

tance requires the computation of the (Euclidean) distance between every pair

of eigenvalues and thus it takes O(r2) runtime.

• Hausdorff metric is a standard distance between compact sets in a metric

space [17]; it is defined as

Hausdorff({λi}, {µi}) = max

(
max
i

min
j
|λi − µj |,max

j
min
i
|λi − µj |

)
. (5)

Similarly as above, this computation takes O(r2) runtime.

From each of the following data sets in turn we take two graphs and run this

experiment: HG, KR, P2P, AS, CA (see Table 2 and Section 5.3.1 for full description

of data sets). We report the results in Figure 5, where we plot the average of the

three distances for each data set across several repetitions of the experiment (10

repetitions for random graphs and CA, 36 for P2P and AS), as well as the median

value of r after which the eigenvalues have magnitude less than ρ; we call this value

r0.

In Figure 5 we see that Hausdorff has high variance and a somewhat erratic be-

havior on random graphs. Euclidean has the least variance and most predictable be-

havior, continuing to increase as the value of r grows. In the KR data sets, Hausdorff

presents an “elbow” near r0, after which it levels off without much change for in-

creasing values of r. Interestingly, the plots suggest that, in the case of EMD, the

steepest decrease usually occurs before r0. Also of note is the fact that on HG, all

distances have a slight increase for large values of r.

Since Hausdorff does not appear to have a predictable behavior, and Euclidean

continues to increase with no discernible inflection point even when using the largest

r = 1000 eigenvalues, we favor EMD when comparing non-backtracking eigenvalues

of two graphs. Furthermore, EMD has a predictable “elbow” behavior that happens

near r0. Thus we conclude that this is an appropriate choice for the number of
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Figure 5 Different ways of comparing non-backtracking eigenvalues. We compare the

non-backtracking eigenvalues of two different graphs of the same data set using three different

methods: EMD, Euclidean, Hausdorff (see Section 5.2), using the r eigenvalues largest in

magnitude. We also show the median value r0 after which the eigenvalues have magnitude less

than
√
λ1. Shaded areas show standard deviation. First two rows show results for random graphs

of models KR and HG for different number of nodes n. Bottom row shows results for real data sets.

See Table 2 for description of data sets. Values have been normalized by the largest observed

distance with each different distance method for ease of comparison.

eigenvalues to use. In the following we use EMD as the distance d and r0 as the value

of r for all our experiments.[5]

5.3 NBD: Experiments

5.3.1 Data sets and base lines

A description of the data sets we use throughout this article can be found in Ta-

ble 2. We use random graphs obtained from six different models: Erdös-Rényi (ER)

[40, 41], Barabási-Albert (BA) [42], Stochastic Kronecker Graphs (KR) [43, 44], Con-

figuration Model with power law degree distribution (CM) [45], Watts-Strogatz (WS)

[5]Here we choose both EMD and r = r0 based on the experimental evidence of Figure 5.

An early version of NBD used Euclidean and a value of r set to a constant [52].

Following that version, other authors have independently proposed using EMD [53].
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[46], and Hyperbolic Graphs (HG) [47, 48]. We generated CM and HG with degree

distribution pk ∼ k−γ with exponent γ = 2.3, and WS with rewiring probability

p = 0.01. All graphs have approximate average degree 〈k〉 = 15. From each model,

we generate three batches, each with 50 graphs: the first with n = 1, 000 nodes, the

second with n = 5, 000, and the third with n = 10, 000. This yields 6× 3 data sets

that we refer to by model and graph size (see Table 2). We also use real networks,

divided in four different data sets: social, CA, AS, and P2P. social contains six

networks obtained from human online social networks (facebook, twitter, sdot8,

sdot9, epinions, and wiki) [54, 55, 56, 57], CA contains five co-authorship net-

works (AstroPh, CondMat, GrQc, HepPh, HepTh) obtained from the arXiv pre-print

server [58], P2P contains nine snapshots of the peer-to-peer connections of a file-

sharing network [58], and AS contains nine snapshots of the Internet autonomous

systems infrastructure [59]. Note that P2P and AS are temporal snapshots of the

same network and thus we may assume that they have been generated using the

same growth process. The same is not true for social and CA: even though they

contain similar kinds of networks, their generating mechanisms may be different.

The real networks were obtained through SNAP [60] and ICON [1]. In all, we have

929 different networks (900 random, 29 real), comprising 22 different data sets (6×3

random, 4 real).

Figure 6 shows the result of computing NBD on different synthetic and real data

sets. Observe that NBD is capable of distinguishing between random graphs gener-

ated from different models, as well as between the technological data sets P2P and

AS. NBD detects less of a difference between data sets social and CA, which points

toward the homogeneity of connectivity patterns in human-generated networks.

Among all distance methods available, we choose the following three to compare

against NBD. The first method is ESCAPE [61] which given a graph G computes

a 98-dimensional vector v of motif counts, i.e., vi is the number of times that the

ith motif appears in G for i = 1, ..., 98. To compare two graphs we then compute

the cosine distance between their ESCAPE feature vectors. The second method is

Graphlet Correlation Distance [12], or GCD for short, which characterizes a graph

with a so-called graphlet correlation matrix, a 11 × 11 matrix whose entries are

the correlation between the number of per-node occurrences of 11 small motifs.

The distance between two graphs is then the Frobenius norm of the difference
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Figure 6 NBD in synthetic and real networks. Heatmap showing the NBD values between pairs

of networks in our data sets. Each panel is normalized so that the largest observed distance is 1.0

for ease of comparison. Left: random networks with n = 5, 000 nodes. Middle: real network data

sets P2P and AS. Right: real network data sets social and CA. twitter has been excluded from

the right panel for clarity since it lies far away from most other networks (see more discussion in

Section 5.3.4).

of their graphlet correlation matrices. The third method is taken from Schieber

et al [8], and will be referred to here as S. Distance measure S depends on the

distribution of shortest path length distances between each pair of nodes in a graph.

In this way, we are comparing NBD, which depends on the number and length

of non-backtracking cycles, to other distance methods that also depend on the

occurrence of a particular type of subgraphs: ESCAPE and GCD depend on motif

counts, while distance S depends on lengths of shortest paths. As a baseline, we

use the 1-dimensional EMD between the r = 300 largest Laplacian eigenvalues of

each graph; we call this baseline Lap. We report the performance of two versions

of NBD: NBD-300 uses the largest r = 300 non-backtracking eigenvalues of each

graph, while NBD-ρ uses r = min{300, r0} where r0 is the number of eigenvalues

whose magnitude is greater than ρ =
√
λ1, as explained before. We use a maximum

of 300 because most of our networks have r0 < 300; see Figure 7 for values of

r0 for all our data sets. This means that NBD-ρ sometimes uses vastly different

numbers of eigenvalues to compare two networks. For example, when comparing a

BA-10k graph to twitter, we are comparing approximately 15 eigenvalues versus

min{300, r0 = 1393} = 300. Note that EMD handles this difference naturally.

Using each distance method in turn, we obtain a 929× 929 distance matrix con-

taining the distance between each pair of networks in our data sets. Using these

distance matrices we perform the following experiments.
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Figure 7 Values of r0 for random (top) and real (bottom) data sets. r0 is the number of

eigenvalues whose magnitude is greater than
√
λ1, where λ1 is the largest eigenvalue in

magnitude, which is always guaranteed to be positive and real. We use r0 eigenvalues from each

network when comparing them. This usually yields different numbers of eigenvalues per network.

5.3.2 Clustering networks

Our main experiment is to evaluate the distance methods in a clustering context

[62]. We use each distance matrix as the input to a spectral clustering algorithm.

To form a proximity graph from the distance matrix, we use the RBF kernel. That

is, if the distance between two graphs under the i-th distance method is d, their

proximity is given by exp(−d2/2σ2
i ). We choose σi as the mean within-data set

average distance, that is, we take the average distance among all pairs of ER graphs,

the average distance among all pairs of BA graphs, and so on for each data set of

random graphs, and average all of them together [63]. Note this yields a different σ

for each distance method, and that we do not use graphs from real data sets to tune

this parameter. We program the algorithm to find the exact number of ground-truth

clusters. We report the results of this experiment using all graphs (22 clusters), only

real graphs (4 clusters), and only random graphs (18 clusters).

Once we have obtained the clusters, we use as performance metrics homogene-

ity, completeness, and v-measure. Homogeneity measures the diversity of data sets

within a cluster, and is maximized when all data sets in each cluster come from
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Figure 8 Evaluation of spectral clustering. Results of clustering all data sets using spectral

clustering. Homogeneity measures the diversity of ground-truth data sets that are clustered

together; completeness measures the diversity of clusters assigned to the networks belonging to

the same data set; see Section 5.3.2 for definitions. We plot the average homogeneity and

completeness values of the clusterings obtained from applying spectral clustering, using each

distance method in turn, over all networks (left), only real networks (middle), and only random

graphs (right). Gray guide lines mark the set of points with the same v-measure (the iso-v-measure

curves). ESCAPE not shown in middle panel due to poor performance (v-measure = 0.24).

the same data set (higher is better). Completeness is the converse; it measures the

diversity of clusters assigned to the graphs in one data set (higher is better). The

v-measure is the harmonic mean of homogeneity and completeness [64]. Concretely,

let C be the ground-truth class of a network chosen uniformly at random, and let

K be the cluster assigned to a network chosen uniformly at random. Homogeneity

is defined as 1−H(C|K)/H(C) where H(C) is the entropy of the class distribution,

and H(C|K) is the conditional entropy of the class distribution given the cluster

assignment. If the members of each cluster have the same class distribution as the

total class distribution, then H(C|K) = H(C), and therefore homogeneity is 0. If

each cluster contains elements of the same class, i.e., if the conditional distribu-

tion of classes given the clusters is constant, then H(C|K) = 0 and homogeneity

is 1. If H(C) = 0, then homogeneity is defined to be 1 by convention. Similarly,

completeness is defined as 1−H(K|C)/H(K), and conventionally equal to 1 when

H(K) = 0. Note that homogeneity is analogous to precision, while completeness

is analogous to recall, which are used in binary classification. Correspondingly, v-

measure is analogous to the F1-score.

In Figure 8 we present the results of this experiment. When clustering all graphs,

NBD-300 performs best (v-measure 0.84), followed by S (v-measure 0.83). Distances

S and GCD perform well across data sets, however, numerical methods for computing
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eigenvalues are orders of magnitude faster than the state-of-the-art methods for

computing all shortest path distances (needed to compute S) or per-node motif

counts (needed for GCD); see Section 5.3.3. ESCAPE performs well in completeness

but not in homogeneity in random graphs, and extremely poorly in real graphs

(v-measure 0.27).

Interestingly, when clustering only the real networks, NBD-300 performs more

poorly than when using random graphs, while NBD-ρ obtains the highest v-measure

score across all our experiments (0.87). This indicates that the choice of r = r0 as

the number of eigenvalues larger than
√
λ1 can be both more efficient and more

informative than computing a set constant value of, say, r = 300.

We conclude from this experiment that (i) counting motifs locally (number of per-

node occurrences) is better than counting them globally (number of occurrences in

the whole graph), because GCD performs better than ESCAPE across data sets, (ii)

that comparing length distributions of paths or cycles seems to yield better per-

formance than motif counting, because NBD and S perform better than others in

general, and (iii) that non-backtracking eigenvalues provide slightly better perfor-

mance at distinguishing between real and synthetic graphs than other combinatorial

methods, as well as other spectral methods such as Lap. We highlight that NBD

is in general also more efficient than the combinatorial methods, while being only

slightly more time-consuming than the spectral method Lap; see next Section.

5.3.3 Runtime comparison

As part of Section 5.1 we included a complexity analysis of the runtime of NBD

(Algorithm 1). Here, we include a direct comparison of runtime of NBD and all

other baseline algorithms. Observe that all five graph distance algorithms used

have something in common: they all run in two steps. The first step is to compute

a certain kind of summary statistics of each of the two graphs to be compared, and

the second step is to compare those precomputed statistics. For NBD and Lap, the

first step computes eigenvalues of the corresponding matrices, while GCD and ESCAPE

compute motif counts, and S computes the shortest path distance between each pair

of nodes in the graph. The bulk of the computational time of all methods is spent in

the computation of these statistics, rather than in the comparison. Therefore, in this

section we compare the runtime of this first step only. Another reason to focus on
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the runtime of this first step only is that it depends on one single graph (in all cases,

the computation of the corresponding statistics is done on each graph in parallel),

and thus we can focus on investigating how the structure of a single graph affects

computation time. All experiments were conducted on a computer with 16 cores and

100GB of RAM with Intel Skylake chip architecture, with no other jobs running

in the background. Note that all distance algorithms are implemented in Python,

except for ESCAPE which is implemented in C++. Thus we focus on comparing the

four algorithms that are implemented in Python. For big-O complexity analyses we

refer the interested reader to each of the corresponding references for each algorithm.
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Figure 9 Runtime comparison. We measure the time it takes to run each distance method on

three different random graph models (ER, top; BA, middle; HG, bottom). We investigate the

effect of varying three different parameters (number of eigenvalues, left; number of nodes, center;

average degree, right). Lines show average, error bars show standard deviation.

Figure 9 shows results of this experiment. In all panels, the vertical axis shows

the running time of the algorithm in seconds, and the horizontal axis presents the

value of a structural parameter. Each row corresponds to one of the three following

random graph models: ER (top row), BA (middle row), HG (bottom row). Each

column corresponds to the variation of a single structural parameter, while keeping

the other two fixed. Concretely, the left column shows how the number of eigenvalues
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r used for NBD and Lap affects their runtime on graphs with n = 1000 and 〈k〉 = 15.

The center column shows how varying the number of nodes n affects the runtime of

all five distances while holding r = 10 and 〈k〉 = 15 fixed. The right column shows

how varying 〈k〉 affects the runtime while keeping r = 10 and n = 1000 fixed. Note

that all panels are presented on a log-linear scale.

The left column of Figure 9 shows evidence for the fact that the runtime scaling of

NBD is very close to that of Lap, as claimed in Section 4.2 because the former uses

the non-backtracking matrix, which is always four times the size of the Laplacian

matrix. However, their runtimes do not differ by only a constant factor in the cases

of ER and HG. We hypothesize that this is because the non-backtracking matrix has

a more complicated structure than the Laplacian depending on the structure of the

underlying graph (see Section 4.3 and especially Lemma 3). In all other panels we

see that NBD and Lap present similar scaling behavior, but NBD is usually slower.

The middle column presents the effect of varying the number of nodes in the graph

on all five distance methods. NBD is consistently the third fastest method for HG

and BA graphs, after ESCAPE and Lap, while GCD is consistently the slowest by two

or three orders of magnitude in some cases. Note that the scaling behavior of all

methods is fairly similar between BA and HG graphs, while for ER it is markedly

different. When varying the number of nodes of ER graphs, for example, NBD and

GCD seem to scale at the same rate, and take the about the same runtime, while

S scales more poorly than all others. In all other panels, GCD seems to scale more

poorly than other methods.

From the results presented in Figure 9 we conclude that NBD is a viable al-

ternative in the case of complex networks with heterogeneous degree distributions

(modeled by BA and HG) when the application at hand requires comparison of

counts of motifs or subgraphs such as non-backtracking paths of arbitrary length.

5.3.4 Nearest neighbors

In Figure 10 we present a dendrogram plot computed on all real networks using a

hierarchical clustering (average linkage) of NBD-ρ. We can see that all networks of

data sets P2P and AS are perfectly clustered with each other in one cluster, while

five networks of the social data set (all except twitter) are clustered with each

other, although they are broken up into two clusters. Data set AS is also broken
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Figure 10 Hierarchical clustering of real networks. Dendrogram showing hierarchical clustering

(average linkage) of all real networks in our data sets. twitter is an outlier because, we

hypothesize, it has more than twice as many edges (1.3M) as the second largest graph in our data

sets (sdot9 with 581k edges).

up into three different clusters: one with GrQc, CondMat, and HepTh, while HepPh

and AstroPh lie in their own cluster. To test the robustness of these clusters, we

ran the same experiment (i) leaving one data set out each time, and (ii) randomly

choosing the ordering of the input data sets. These variations are made to address

the shortcomings of hierarchical clustering as some implementations may break

ties in arbitrary ways. Neither of these variations affected the clusters reported in

Figure 10.

To better understand these clusters, we present in Table 3 the k = 10 networks

that are closest to each of these data sets: facebook, AstroPh, and twitter. We

show the nearest networks among all networks, including random graphs, as well

as the nearest real networks only. In the case of facebook, we see that, even when

including random networks, epinions is the network closest to it. This is per-

haps surprising since these two networks have substantially different values for the

number of nodes, average degree, and average clustering coefficient (see Table 2).

The networks closest to facebook, after epinions, all come from the HG random

graph model, which is expected because this model has been shown to produce

heavy-tailed degree distributions with high clustering, which both facebook and

epinions present as well. When considering only real networks, all but one of the

social networks are within the 10 nearest networks to facebook. In the case of
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AstroPh, the closest network to it is another coauthorship network, CondMat. Like

in the previous case, it is close to many random graphs of model HG. Among the real

networks, all other coauthorship graphs are in the nearest 10. Finally, twitter is

the data set that lies farthest from all others. This may be due to the fact that it has

substantially more edges than all others: it has 1.3M edges, while the second largest,

epinions, has only 748k. We see that the closest random networks to twitter all

come from the random model WS. This may be due to the fact that both twitter

and WS have many large eigenvalues with zero imaginary part, so the earth mover

distance between them will be small. We also observe that, even though twitter is

far from all the networks in the dendrogram, all of the social graphs are within

the 10 nearest networks to it.

Table 3 For networks facebook, AstroPh, twitter we show the 10 networks closest to each, as

determined by NBD-ρ, and report the distance score in parentheses. Note that all social networks

except for twitter are within the top 5 nearest networks to facebook, in spite of their imperfect

clustering in Figure 10. Likewise, all coauthorship networks are within the top 7 networks closest to

AstroPh. Interestingly, twitter is also closest to other social networks, as well as some coauthorship

networks, even though it is an outlier and the distances are far greater than others.

rank facebook AstroPh twitter

1 epinions (4.08) CondMat (11.33) AstroPh (31.38)

2 HepPh (5.26) epinions (13.72) CondMat (40.11)

3 sdot9 (6.05) facebook (14.18) epinions (41.49)

4 sdot8 (6.24) GrQc (14.71) facebook (42.45)

5 wiki (6.56) HepTh (14.84) HepTh (42.60)

6 AS414 (8.98) sdot9 (16.96) HepPh (44.30)

7 AS505 (9.03) HepPh (16.97) GrQc (44.54)

8 AS512 (9.05) sdot8 (17.37) sdot9 (44.66)

9 AS421 (9.06) AS407 (17.62) wiki (45.64)

10 AS407 (9.16) AS414 (17.68) sdot8 (45.88)

From these observations we conclude that NBD is able to identify networks that

are generated by similar mechanisms: all technological graphs – i.e., autonomous

systems of the Internet (AS) and automatically generated peer-to-peer file sharing

networks (P2P) – are perfectly clustered together, and all online social graphs are

ranked near each other, even when some of these have vastly different elementary

statistics such as number of nodes, number of edges, and average clustering coeffi-

cient.
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Figure 11 NBD in the presence of noise. For each graph AS331, P2P09, facebook, HepPh we

compute 10 rewired versions using degree-preserving randomization, for increasing percentage of

edges rewired. We show the average NBD between the original graph and the rewired versions;

shaded regions indicate standard deviation. As expected, NBD is an increasing function the

percentage of rewired edges. This implies that NBD is detecting graph structural features that are

not determined by degree distribution.

5.3.5 Rewiring edges

We are interested in the behavior of NBD in the presence of noise. For this purpose,

given a graph G, we compute G′ by rewiring some of the edges of G in such a

way that the degree distribution is kept intact (degree preserving randomization).

We then compute the NBD between G and G′. For this experiment we use four

networks, one from each of our real data sets: AS331, P2P09, facebook, and HepPh.

We show our results in Figure 11.

As expected, the NBD between a graph and its rewired versions grows steadily

as the percentage of rewired edges increases. Note that AS331 and P2P09 seem to

plateau when the percentage of rewired edges is 65% or larger, while facebook and

HepPh have a slight jump close to 70%. Observe too that the variance of the NBD is

kept fairly constant, which indicates that the distribution of non-backtracking cycle

lengths in all rewired versions of each graph is very similar to each other. This may

be due to the fact that edge rewiring destroys short cycles more quickly than long

cycles. Furthermore, observe that for high percentages of rewired edges, the rewired

graph is essentially a configuration model graph with the same degree distribution

as the original. Therefore, by comparing the NBD values from Figures 10 and 11, we

can conclude that the NBD between these four networks and a random graph with

the same degree distribution is larger than the average distance to other networks

in the same data set (cf. Figure 10 and discussion in previous Section). We conclude
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that NBD is detecting graph structural properties – stored in the distribution of

non-backtracking cycle lengths and encoded in the non-backtracking eigenvalues –,

that are not solely determined by the degree-distribution of the graph.

6 NBED: Non-backtracking embedding dimensions

In this Section we discuss the potential of a second application of the eigendecom-

position of the non-backtracking matrix in the form of a new embedding technique.

In this case, instead of the eigenvalues, we use the eigenvectors. We propose the

Non-Backtracking Embedding Dimensions (or NBED for short) as an edge embed-

ding technique that assigns to each undirected edge of the graph two points in Rd

– one for each orientation –, where d is the embedding dimension. We are able to

find many interesting patterns that encode the structure of the network, which we

then put to use for anomaly detection. While the visualizations found with NBED

are certainly peculiar and rich in information, future work will prove essential in

determining the full extent of possible applications of NBED.

Concretely, given a graph G with edge set E and directed edge set ~E, consider a

unit eigenvector v corresponding to the non-backtracking eigenvalue λ. Whenever λ

is real, the entries of v are guaranteed to be real. Given the d eigenvectors {vi}i=di=1

corresponding to the d eigenvalues with largest magnitude, the embedding of an

edge (k, l) ∈ E is a point in R2d whose entries are given by

(
f(v1k→l), f(v2k→l), ..., f(vdk→l), f(v1l→k), f(v2l→k), ..., f(vdl→k)

)
, (6)

where f is defined as f(vik→l) = Re(λi)Re(vik→l) − Im(λi)Im(vik→l) and Re, Im

are the real and imaginary pats of a complex number, respectively. As mentioned

previously, λ1, the largest eigenvalue, is always guaranteed to be real and positive,

and the entries of v1 are also real and positive. Thus, f(v1k→l) = v1k→l for every

k → l. Whenever any λi, i = 2, 3, ..., has non-zero imaginary part, the entries of vi

may also be complex numbers in general, and f(vik→l) is simply a linear combination

of the real and imaginary parts.

In the following we use the 2-dimensional NBED of real and random graphs.

The advantages of this 2-dimensional edge embedding are as follows. First, the first

and second eigenvectors of the non-backtracking matrix have been studied before

and they can be interpreted in terms of edge centrality [24, 25] and community
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detection [26, 27, 28] respectively. Second, NBED provides a deterministic graph

embedding, as opposed to other methods that are stochastic due to their dependence

on random sampling of subgraphs [65, 66] or due to stochastic optimization of

some model [67, 68]. Third, NBED makes a distinction between the two possible

orientations of an edge thus providing more information about it. We conjecture

that these properties make NBED more robust to the presence of noise in the

graph when compared to embeddings generated by popular models such as deep

networks, which are in general not interpretable, are stochastic, and usually work

on nodes rather than directed edges. Further, the 2-dimensional version of NBED

is particularly important because our experimental evidence shows that the second

non-backtracking eigenvalue of complex networks tends to be real and positive,

which means that we can visualize these embeddings on the real plane without

losing any information due to the linear combination f . We proceed to analyze

the visual patterns we can identify in NBED visualizations; future research will be

necessary for analytic characterizations of them.

6.1 Visualization

In Figure 12 we present the 2-dimensional NBED of one network from each of our

random data sets with n = 5, 000 nodes (see Section 5.3.1 for description). Each

edge (k, l) corresponds to two dots in this plot: (v1k→l, v
2
k→l) and (v1l→k, v

2
l→k). All

graphs used in Figure 12 have their two largest eigenvalues real and positive. We

proceed to describe the patterns that we observe in these plots and how they relate

to structural properties of the graph.

1 In all of the plots except for WS-5k we see small sets of dots (red circles) that

are markedly separated from the bulk of the dots. Every one of these sets is

made up of the embeddings of the directed edges k → l for a fixed l, and the

horizontal position of this set corresponds to the degree of l. That is, the larger

the degree of a fixed node l, the more likely all the embeddings of edges of

the form k → l are to cluster together separate from the rest, and the further

right this cluster will be.

2 Two of these sets corresponding to the same graph seem to have similar struc-

tures. That is, the relative positions of dots forming a cluster encircled in red

is repeated for all such cluseters inside each graph. For example, the sets of
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Figure 12 NBED of example random graphs. We select one graph from each of our random data

sets with n = 5, 000 nodes and show its 2-dimensional NBED. Each dot corresponds to a directed

edge; color corresponds to the degree of the target node. We are able to detect patterns, such as

small sets of points that are separate from the rest (red circles), and boundaries that determine

the regions of the plane where the points lie (gray dashed lines). See Section 6.1 for discussion

and interpretation.

BA-5k and KR-5k are much more vertically spread than those of CM-5k or

HG-5k. We conclude that each of these sets have a particular internal struc-

ture that correlates with global graph structure, as it is repeated across sets.

In ER-5K, the internal structure of each set is less well marked, owing to the

fact that there are no global structural patterns in the ER model.
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3 In BA-5k, ER-5k, HG-5k, and KR-5k, we find that the dots inhabit a certain

region of the plane that is bounded by a roughly parabolic boundary (gray

dashed lines). Furthermore, the cusp of this boundary always lies precisely

at the origin. That is, there are never dots to the left of the origin, and the

vertical spread of the dots grows at roughly the same rate both in the upper

half-plane and the lower half-plane. Since the vertical axis corresponds to

the entries of the second eigenvector v2 which has been shown to describe

community structure, we conjecture that the significance of this boundary is

related to the existence of communities in the network. (See Section 7 for

more discussion on this point.)

4 In Figure 12, the color of the embedding of edge k → l corresponds to the

degree of the source node k. In this way, we can use these plots to gather

information about the degree distribution of the graph. For example, the plot

for ER-5k looks like a noisy point cloud because the degree distribution is

Poisson centered around 〈k〉 = 15, and the plot for WS-5k is very homogeneous

in color because all nodes start with the same degree k = 14 and only a few

of them are rewired. Furthermore, if one compares the color distribution of

the plots for BA-5k, CM-5k, and HG-5k, one can differentiate that even though

all have heavy-tailed degree distributions, their exponents must be different.

Indeed, for BA-5k we have γ = 3 while the other two were generated with

γ = 2.3.

5 From all previous considerations we can analyze the plot of KR-5k as a case

study. First, it presents small sets of dots that are markedly separate from

the bulk, and whose structure is similar to those of BA-5k. Second, its color

distribution is closer to that of ER-5k than to any of the others. Third, it

exhibits the boundary effect that we see in both BA-5k and ER-5k. From

these observations we conclude that the stochastic Kronecker graph model is

a “mix” between the Barabasi-Albert and Erdos-Renyi models, in the sense

its plot has elements from both of the plots for BA and ER. Consider this

in light of Figure 1 where the graphs of these three data sets are clustered

together, even when using the largest r = 200 non-backtracking eigenvalues of

each graph. This means that the eigendecomposition of the non-backtracking

matrix is detecting the similarities and differences between these three random
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Figure 13 NBD of daily and weekly Enron graphs. Top: data aggregated into daily graphs and

compared to one arbitrarily chosen milestone (Sunday, July 15th, 2001). Weekends are shaded

blue. The periodicity of weekly communications is recovered. Bottom: Data aggregated into

weekly graphs and compared to the week starting on Monday January 1st, 2001. Most peaks in

values of NBD corresponding to events occurring during the Enron scandal.

graph models, which we can identify through a visual analysis of Figures 1

and 12.

6 Lastly, we focus on the plot for WS-5k in Figure 12. This plot shows none of

the characteristics of the others, and in fact some of its points clearly fall on

a path determined by a continuous curve. We hypothesize that this is due to

the strong symmetry of the ring lattice from which it is generated. Studying

the properties of the NBED of highly symmetric graphs and their randomized

versions is a task we leave for a future work.

7 Case Study: Enron emails

In this Section we use both NBD and NBED to perform an analysis of the well-

known Enron email corpus [15]. This data set is comprised of email communications

of Enron corporation employees in the years 2000-2002. From it, we form two dif-

ferent data sets of networks. In all networks each node represents an email address,

and an edge between two email addresses represents that at least one email was

sent from one account to the other. We aggregate these networks on a weekly basis,

as well as on a daily basis, and we proceed to apply our methods NBD and NBED

on them.
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Figure 14 NBED of select weekly-aggregated Enron graphs. Top left, top right, and bottom left

correspond to non-anomalous weeks, according to Figure 13. Bottom right corresponds to the

anomalous week marked with a yellow circle in Figure 13, labeled “1: Lay resigns from board”. In

all four we see some of the patterns that were identified in Figure 12 and Section 6.1.

In the top panel of Figure 13 we show the distance between a daily graph and

the graph corresponding to a Sunday. In this plot we clearly see that NBD is able

to detect the periodicity of email communications. In the bottom plot we show the

distance between a weekly graph and the week starting on Monday January 1st

2001. In this case, we see that peaks in NBD values (or in r0 values) correlate to

several major events that occurred during the Enron bankruptcy scandal [69, 70, 71].

Not all important events are detected this way, however, as the event ”1: Skilling

becomes CEO” is not identified through high peaks in either NBD or r0. Further

research is necessary to clarify precisely what kind of events are being detected in

this way.

In Figure 14 we show the NBED of four weekly-aggregated graphs. The first

three (top right, top left, bottom left) correspond to non-anomalous weeks, while

the one on the bottom right, corresponding to the week of February 4th, 2002,
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is considered anomalous (cf. Figure 13 where it is marked with a yellow circle

and labeled ”7: Lay resigns from board”). Most other weekly graphs have NBED

plots that generally resemble the first three. In these plots we are able to see once

again some of the features identified in Section 12. First, they exhibit the sets of

points clustered together separate from the rest with a similar internal structure

to each other; like before, these correspond to the incoming edges of high degree

nodes. Second, the roughly parabolic boundaries of Figure 12 have become sharply

pointed with a cusp at the origin, from which two seemingly straight line segments

are born in different directions. Third, the angle that these straight line segments

form at the origin is different from graph to graph, and the lines are not symmetric

with respect to the horizontal axis. As mentioned previously, the second eigenvector

(e.g., the vertical axis in Figures 12 and 14) is related to community structure. We

hypothesize that the asymmetry seen in Enron graphs but not in random graphs

is due to the presence of unevenly-sized communities; see Appendix 2. Lastly, the

anomalous week of February 4th, 2002 (bottom right) looks decidedly different than

the others, due to the presence of a few points very far apart from the bulk of the

plot.

We have presented a visual analysis of the Enron corpus using NBD and NBED.

Using these techniques, we are able to recover properties not only of the underlying

network, but of the underlying data set as well, such as periodicity and temporal

anomalies. Even though the analytical details of NBED require further considera-

tion, we are still able to interpret the visualizations of Figure 14 to mine important

information about the underlying data set.

8 Discussion and conclusions

We have focused on the problem of deriving a notion of graph distance for com-

plex networks based on the length spectrum function. We add to the repertoire

of distance methods the Non-Backtracking Spectral Distance (NBD): a principled,

interpretable, computationally efficient, and effective technique that takes advan-

tage of the fact that one can interpret the non-backtracking cycles of a graph as its

free homotopy classes. NBD is principled because it is backed by the theory of the

length spectrum, which characterizes the 2-core of a graph up to isomorphism. It

is interpretable because we can study its behavior in the presence of structural fea-
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tures such as hubs and triangles, and we can use the resulting geometric features of

the eigenvalue distribution to our advantage. It is efficient relative to other similar

methods that depend on the combinatorial enumeration of different kinds of sub-

graphs. Lastly, we have presented extensive experimental evidence to show that it is

effective at discriminating between complex networks in various contexts, including

visualization, clustering, and anomaly detection. Performance of NBD is better or

comparable to other distance methods such as ESCAPE, S, GCD, and Lap; see Sec-

tion 5.3. We chose to compare against these methods because the first three depend

on motif counts in one way or another, as NBD depends on non-backtracking cycle

counts, and Lap depends on the spectral decomposition of a matrix representation

of a graph, as NBD depends on the non-backtracking eigenvalues.

Motivated by the usefulness of NBD due to the connections with the homotopy

of graphs and the spectrum of the non-backtracking matrix, we also presented a

new embedding technique, Non-Backtracking Embedding Dimensions (or NBED for

short) which provides a rich visualization full of interpretable patterns that describe

the structural properties of a network. We have provided examples of these patterns

as well as their application to anomaly detection. Further research will reveal the

full potential of applications of NBED.

An implementation of NBD, NBED and our algorithm for computing the non-

backtracking matrix, is available at [16].

Limitations NBD relies on the assumption that the non-backtracking cycles con-

tain enough information about the network. Accordingly, the usefulness of the NBD

will decay as the 2-core of the graph gets smaller. For example, trees have an empty

2-core, and all of its non-backtracking eigenvalues are equal to zero. In order to

compare trees, and more generally, those nodes outside the 2-core of the graph,

the authors of [36] propose several different strategies, for example adding a “cone

node” that connects to every other node in the graph. However, many real-world

networks are not trees and we extensively showcased the utility of NBD on this

class of networks.

The greatest limitation of NBED is that we are not able to provide rigorous

derivations for the patterns we identify in Section 6.1. Without a formal theory

of the relationship between the eigenvectors of the non-backtracking matrix and
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the structural properties of graphs it is difficult to design algorithms that make

use of these patterns automatically. Regardless, we have presented evidence for the

usefulness of these patterns even with a visual analysis.

Future work There are many other avenues to explore in relation to how to ex-

ploit the information stored in the length spectrum and the fundamental group

of a graph. As mentioned in Sec. 4.1, the major downside of the relaxed length

spectrum L′ is the fact that we lose information stored in the combinatorics of the

fundamental group. That is, L′ stores information about the frequency of lengths

of free homotopy classes, but no information on their concatenation, i.e., the group

operation in π1(G). One way to encapsulate this information is by taking into ac-

count not only the frequency of each possible length of non-backtracking cycles,

but also the number of non-backtracking cycles of fixed lengths `1 and `2 that can

be concatenated to form a non-backtracking cycle of length `3. It remains an open

question whether this information can be computed using the non-backtracking ma-

trix for all values of the parameters `1, `2, `3, and if so, how to do it efficiently. One

alternative is to rely upon efficient motif counting [61, 72].

A different research direction is to focus on the non-backtracking eigenvalues

themselves, independently of the length spectrum theory. One standing question is

to characterize the behavior of the eigenvalues after the network has been rewired.

Section 5.3.5 only scratches the surface of what can be said in this regard. However,

spectral analysis of the non-backtracking matrix is exceedingly difficult due to the

fact that it is asymmetric and non-normal and therefore most of the usual tools for

spectral analysis are not applicable.

In this work, we have focused on introducing and exploiting novel theoretical

concepts such as the length spectrum and the fundamental group to the study of

complex networks. We are confident this work will pave the road for more research

in topological and geometric data analysis in network science.

Appendix 1: UMAP parameter settings

In order to understand the visualizations of the non-backtracking eigenvalues in

Figure 1 we will now explain some of the features of the UMAP algorithm. For full

detail we refer the interested reader to [49].
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UMAP stands for Uniform Manifold Approximation and Projection, authored by

Leland McInnes, John Healy, and James Melville. Data are first represented in a

high dimensional euclidean space using Laplacian Eigenmaps [73], then they are

approximated unifomly using fuzzy simplicial sets and patched together to form a

manifold, and finally this manifold is projected to R2. This process reveals topo-

logical features of the data and provides flexibility for geometrical specifications to

distinguish task-specific quantities of interest.

In this respect, UMAP provides a very flexible algorithm, which has various pa-

rameters. In the interest of reproducibility, we list our parameter choices of the

subset of parameters that yield results of interest for network science, as they allow

us to separate different random graph models from each other. A full explanation

of these and other parameters is included in [49] in Section 4.3. In Figure 1 of this

reference authors show a comparison of how visualizations change with the choice

of parameters.

• n neighbors: A weighted k-nearest neighbor graph is constructed from the

initial data. The number of neighbors is set with this parameter. We used a

value of 75.

• metric: Different metrics in the high dimensional space where the data are

embedded can be specified. We found good overall results with the Canberra

metric (shown in Figure 1. The Chebyshev and Euclidean metrics cluster ER

graphs together, for some specific values of the other parameters. However

they make HG and CM clusters overlap. A clearly separated projection for

the HG and CM graphs can be found using Correlation metric.

• n epochs: Training optimization epochs. More epochs can provide better re-

sults, with the usual computational drawbacks. We use 1000 epochs.

• min dist: Alters the minimum distance between embedded points. Smaller

values increase clustering, larger values present a more uniformly distributed

visualiaztion. We use a distance of 0.01.

• repulsion strength: Values above 1 increase the weight of negative samples,

i.e., the importance of the distances between far-apart data points. We use a

value of 10.
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• negative sample rate: Sets the number of negative samples to be selected

per each positive sample in the optimization process. We use 50 negative

samples per positive sample.

We were not able to find a specific set of parameters that improved upon the

visualization shown in Figure 1, though it is perhaps the interplay between min dist

and repulsion strength what causes ER graphs to split into two different clusters.

Appendix 2: Asymmetric NBED embeddings

As mentioned in Section 7, the NBED of Enron graphs present a feature that we do

not see in any of the random graphs we handled for this work. Namely, the NBED

of Enron graphs are asymmetric with respect to the horizontal axis (Figure 14),

whereas the NBED of all other random graphs (Figure 12) are generally symmetric.

In Section 7 we hypothesized that this is due to the fact that Enron graphs contain

communities. Here, we present some evidence for this hypothesis.

(i) Same size, same density (ii) Same size, different density

(iv) Different size; 
smaller block is denser

(v) Different size, 
larger block is denser

First eigenvector First eigenvector
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(iii) Different size, same density

Figure 15 NBED of stochastic block model graphs. Embeddings of five random graphs

generated from the stochastic block. Each graph is connected, has n = 150 nodes and was

generated with two blocks; the edge density joining the two different blocks is 0.01. We present

five different realizations, depending on the relative sizes and densities of the blocks.

In Figure 15 we show the NBED of five random graphs generated from the stochas-

tic block model as follows. Each graph has n = 150 nodes and was generated with
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two blocks. In all cases, the generated graphs were connected and the edge density

joining the two different blocks was 0.01. We vary the size and internal density of

each block to yield five different realizations: (i) two blocks of the same size and

same internal density equal to 0.1, (ii) blocks of same size, one with density 0.5 and

the other with density 0.1, (iii) blocks of different size, with the same density 0.1,

(iv) blocks of different size where the larger block has density 0.1 and the smaller

has density 0.5, and (v) blocks of different size where the larger block has density

0.5 and the smaller has density 0.1. In cases (ii) and (iv), we see NBED embeddings

that are markedly asymmetrical with respect to the horizontal axis. Furthermore,

case (iv) in particular is visually reminiscent of the Enron embeddings. Further

work will elucidate more systematically the role of differently-sized commmunities

with different densities on the eigenvalues and eigenvectors of the non-backtracking

matrix.

Availability of data and material

With this work we also release publicly available source code that implements NBD, NBED and the related matrix

computations [16].
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supported by NSF CNS-1314603 and NSF IIS-1741197. Suárez-Serrato was supported by UC-MEXUS (University of

California Institute for Mexico and the United States) CN-16-43, DGAPA-UNAM PAPIIT IN102716, and

DGAPA-UNAM PASPA program. Part of this research was performed while Suárez Serrato was visiting the Institute
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Exterior, Ciudad Universitaria, 04510, CDMX Ciudad de México, México. 4 Khoury College of Computer Sciences,
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50. Saade, A., Krzakala, F., Zdeborová, L.: Spectral density of the non-backtracking operator on random graphs.

EPL (Europhys. Lett.) 107(5), 50005 (2014)

51. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Proc.

of the 1998 Int’l Conf. on Computer Vision (ICCV), pp. 59–66 (1998)



Torres et al. Page 46 of 46

52. Torres, L., Suarez-Serrato, P., Eliassi-Rad, T.: Graph distance from the topological view of non-backtracking

cycles. arXiv:1807.09592 (July, 2018)

53. Mellor, A., Grusovin, A.: Graph comparison via the non-backtracking spectrum. arXiv:1812.05457 (Dec, 2018)

54. McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: Bartlett, P.L., Pereira,

F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing

Systems 25, pp. 548–556 (2012)

55. Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Signed networks in social media. In: Mynatt, E.D., Schoner,

D., Fitzpatrick, G., Hudson, S.E., Edwards, W.K., Rodden, T. (eds.) Proc. of the 28th Int’l Conf. on Human

Factors in Computing Systems, CHI 2010, Atlanta, Georgia, USA, April 10-15, 2010, pp. 1361–1370 (2010)

56. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural

cluster sizes and the absence of large well-defined clusters. Internet Mathematics 6(1), 29–123 (2009)

57. Richardson, M., Agrawal, R., Domingos, P.M.: Trust management for the semantic web. In: Fensel, D., Sycara,

K.P., Mylopoulos, J. (eds.) The Semantic Web - Proc. of the 2nd Int’l Semantic Web Conference (ISWC).

Lecture Notes in Computer Science, vol. 2870, pp. 351–368 (2003)

58. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM

Transactions on Knowledge Discovery from Data (TKDD) 1(1), 2 (2007)

59. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and

possible explanations. In: Grossman, R., Bayardo, R.J., Bennett, K.P. (eds.) Proc. of the 11th ACM SIGKDD

Int’l Conf. on Knowledge Discovery and Data Mining (KDD), pp. 177–187 (2005)

60. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection.

http://snap.stanford.edu/data (2014)

61. Pinar, A., Seshadhri, C., Vishal, V.: ESCAPE: efficiently counting all 5-vertex subgraphs. In: Proc. of the 26th

Int’l Conf. on World Wide Web (WWW), pp. 1431–1440 (2017)
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