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Roadmap 
•  What are roles 
•  Roles and communities 
•  Roles and equivalences (from sociology) 
•  Roles (from data mining) 
•  Summary 
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What are roles? 
•  “Functions” of nodes in the network 

– Similar to functional roles of species in 
ecosystems 

•  Measured by structural behaviors 
•  Examples 

–  centers of stars 
– members of cliques 
–  peripheral nodes 
– … 
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Example of Roles 
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Why are roles important? 
Task Use Case 
Role query Identify individuals with similar 

behavior to a known target 

Role outliers Identify individuals with unusual 
behavior 

Role dynamics Identify unusual changes in 
behavior 

Identity resolution Identify known individuals in a 
new network 

Role transfer Use knowledge of one network to 
make predictions in another 

Network 
comparison 

Determine network compatibility 
for knowledge transfer 

Role Discovery 

ü Automated discovery 

ü Behavioral roles 

ü Roles generalize 
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Roles and Communities 
•  Roles group nodes with similar structural 

properties 
•  Communities group nodes that are well-

connected to each other 
•  Roles and communities are complementary 
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Roles and Communities 
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RolX * Fast Modularity† 

* Henderson, et al. 2012; † Clauset, et al. 2004  
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Roles and Communities 

•  Roles 
– Faculty 

– Staff 
– Students 

– … 
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•  Communities 
– AI lab 

– Database lab 
– Architecture lab 

– … 

Consider the social network of a CS dept 
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Equivalences 
•  Equivalence is any relation that satisfies 

these 3 conditions:  
1.  Transitivity: (a, b), (b, c) ∈ E ⇒ (a,c) ∈ E  

2.  Symmetry: (a, b) ∈ E iff (b, a) ∈ E  

3.  Reflexivity: (a, a) ∈ E  
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Equivalences Deterministic Regular Automorphic Structural Probabilistic Stochastic 

Equivalences 
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Deterministic Equivalences 
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Structural Equivalence 
•  [Lorrain & White, 1971] 
•  Two nodes u and v are structurally  

equivalent if they have the same  
relationships to all other nodes 

•  Hypothesis: Structurally equivalent  
nodes are likely to be similar in other  
ways – i.e., you are your friend 

•  Weights & timing issues are not considered 
•  Rarely appears in real-world networks 
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Structural Equivalence: Algorithms 
•  CONCOR (CONvergence of iterated CORrelations)  

[Breiger et al. 1975]  
•  A hierarchical divisive approach 

1.  Starting with the adjacency matrix, repeatedly calculate Pearson 
correlations between rows until the resultant correlation matrix 
consists of +1 and -1 entries 

2.  Split the last correlation matrix into two structurally equivalent  
submatrices (a.k.a. blocks): one with +1 entries, another with -1 
entries 

•  Successive split can be applied to submatrices in order  
to produce a hierarchy (where every node has a unique position) 
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Structural Equivalence: Algorithms 
•  STRUCUTRE [Burt 1976]  
•  A hierarchical agglomerative approach 

1.  For each node i, create its ID vector by concatenating its row and 
column vectors from the adjacency matrix 

2.  For every pair of nodes 〈i, j〉, measure the square root of sum of 
squared differences between the corresponding entries in their ID 
vectors 

3.  Merge entries in hierarchical fashion as long as their difference is 
less than some threshold α 

T. Eliassi-Rad & C. Faloutsos 18 ECML PKDD 2013 Tutorial 



Structural Equivalences: Algorithms 
•  Combinatorial optimization approaches 

–  Numerical optimization with tabu search [UCINET] 

–  Local optimization [Pajek] 

•  Partition the sociomatrices into blocks based on a cost 
function that minimizes the sum of within block variances 

–  Basically, minimize the sum of code cost within each 
block 
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Cross-Associations (XA)  
•  [Chakrabarti+, KDD 2004] 

•  Minimize total encoding cost of the adjacency matrix  
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Deterministic Equivalences 
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Automorphic Equivalence 
•  [Borgatti, et al. 1992; Sparrow 1993] 
•  Two nodes u and v are automorphically equivalent if all 

the nodes can be relabeled to form an isomorphic graph 
with the labels of u and v interchanged 
–  Swapping u and v (possibly 

along with their neighbors)  
does not change graph distances 

•  Two nodes that are  
automorphically equivalent  
share exactly the same  
label-independent properties 
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Automorphic Equivalence: Algorithms 
•  Sparrow (1993) proposed an algorithm that scales linearly to the 

number of edges 

•  Use numerical signatures on degree sequences of neighborhoods 

•  Numerical signatures use a unique transcendental number like π, 
which is independent of any permutation of nodes 

•  Suppose node i has the following degree sequence: 1, 1, 5, 6, and 9.  
Then its signature is Si,1 = (1 + π)(1 + π) (5 + π) (6 + π) (9 + π)  

•  The signature for node i at k+1 hops is Si,(k+1) = Π(Si,k  + π) 

•  To find automorphic equivalence, simply compare numerical 
signatures of nodes 
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Deterministic Equivalences 
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Regular Equivalence 
•  [Everett & Borgatti, 1992] 
•  Two nodes u and v are regularly equivalent if they 

are equally related to equivalent others 

T. Eliassi-Rad & C. Faloutsos 25 

+
Regular Equivalenceg q

� Introduced by Borgatti (1996)

� Definition:
� Two actors are regularly equivalent if they are equally related to 

i l t thequivalent others

President Motes

Faculty

Graduate Students

Hanneman, Robert A. and Mark Riddle.  2005.  Introduction to social network methods.  Riverside, CA:  University of 
California, Riverside ( published in digital form at http://faculty.ucr.edu/~hanneman/ )
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Regular Equivalence  
(continued) 

•  Basic roles of nodes 
–  source 

–  repeater 
–  sink  

–  isolate 
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Regular Equivalence  
(continued) 

•  Based solely on the social roles of neighbors  

•  Interested in  
–  Which nodes fall in which social roles? 

–  How do social roles relate to each other? 

•  Hard partitioning of the graph into social roles 

•  A given graph can have more than one valid regular 
equivalence set 

•  Exact regular equivalences can be rare in large graphs 
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Regular Equivalence: Algorithms 
•  Many algorithms exist here 
•  Basic notion 

– Profile each node’s neighborhood by the 
presence of nodes of other "types"  

– Nodes are regularly equivalent to the extent that 
they have similar "types" of other nodes at 
similar distances in their neighborhoods 
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Equivalences Deterministic Regular Automorphic Structural Probabilistic Stochastic 

Equivalences 
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Stochastic Equivalence 
•  [Holland, et al. 1983;  

Wasserman & Anderson, 1987] 

•  Two nodes are stochastically  
equivalent if they are  
“exchangeable” w.r.t. a  
probability distribution 

•  Similar to structural  
equivalence but  
probabilistic 
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Stochastic Equivalence: Algorithms 
•  Many algorithms exist here 
•  Most recent approaches are generative  

[Airoldi, et al 2008] 
•  Some choice points 

–  Single [Kemp, et al 2006] vs. mixed-membership 
[Koutsourelakis & Eliassi-Rad, 2008] equivalences 
(a.k.a. “positions”) 

–  Parametric vs. non-parametric models 
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Roadmap 
•  What are roles 
•  Roles and communities 
•  Roles and equivalences (from sociology) 
•  Roles (from data mining) 
•  Summary 
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RolX: Role eXtraction 
•  Introduced by Henderson et al. KDD 2012 

•  Automatically extracts the underlying roles in a 
network 

–  No prior knowledge required 

•  Determines the number of roles automatically 

•  Assigns a mixed-membership of roles to each node 

•  Scales linearly on the number of edges 
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RolX: Flowchart 
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RolX: Flowchart 
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Recursive Feature Extraction 
•  ReFeX [Henderson, et al. 2011a] turns network connectivity into 

recursive structural features 

•  Neighborhood features: What is your connectivity pattern? 
•  Recursive Features: To what kinds of nodes are you connected? 

T. Eliassi-Rad & C. Faloutsos 36 

ReFeX 
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1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#
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Propositionalisation (PROP) 
•  [Knobbe, et al. 2001; Neville, et al. 2003; Krogel, et al. 

2003] 

•  From multi-relational data mining with roots in Inductive 
Logic Programming (ILP) 

•  Summarizes a multi-relational dataset (stored in multiple 
tables) into a propositional dataset (stored in a single 
“target” table)  

•  Derived attribute-value features describe properties of 
individuals 

•  Related more to recursive structural features than structural 
roles 
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Role Extraction 
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1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#

N
od

es
 Recursively 

extract 
features 

Automatically 
factorize roles 

ReFeX 

Local Egonet Recursive 

Neighborhood 

Regional 
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942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#
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Role Extraction: Feature Grouping 
•  Soft clustering in the structural feature space 

–  Each node has a mixed-membership across roles 

•  Generate a rank r approximation of V ≈ GF 

•  RolX uses NMF for feature grouping  

–  Computationally efficient 

–  Non-negative factors simplify interpretation of roles and memberships 

no
de

s 

features 

≈ 

roles 

no
de

s 
× 

ro
le

s 

features 
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Features 
1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
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Figure 1: Role discovery and community discovery

are complementary approaches to network analy-

sis. Left: The 4 roles that RolX discovers on the

largest connected component of the Network Science

Co-authorship Graph: “bridge” nodes (as red dia-

monds), “main-stream” nodes (gray squares), etc -

see text. Right: The 22 communities that Fast Mod-

ularity [6] finds on the same co-authorship graph.

Roles capture node-level behaviors and generalize

across networks whilst communities cannot.

way to determine similarity between nodes by com-
paring their role distributions.1

– Sense-making: The structural roles of RolX can
be understood intuitively by summarizing their
characteristics (NodeSense) and their neighbors
(NeighborSense).

• Automation: RolX is carefully designed to be fully au-
tomatic, without requiring user-specified parameters.

• Scalability: The runtime complexity of RolX is linear
on the number of edges.

We want to emphasize that RolX as a role discovery ap-
proach is fundamentally di↵erent from (and complementary
to) community detection: the former groups nodes of similar
behavior; the latter groups nodes that are well-connected to
each other.

Figure 1 depicts the di↵erence between role discovery and
community discovery for the largest connected component of
a weighted co-authorship network [25]. RolX automatically
discovers 4 roles vs. the 22 communities that the popular
Fast Modularity [6] community discovery algorithm finds.
RolX is a mixed-membership approach, which assigns each
node a distribution over the set of discovered, structural
roles. The node colors for RolX correspond to the node’s
primary role, and for Fast Modularity correspond to the
node’s community. Our four discovered roles represent these
behaviors: “bridge” nodes (red diamonds) representing cen-
tral and prolific authors, “main-stream”nodes (gray squares)
representing neighborhoods of bridge nodes, “pathy” nodes
(green triangles) representing peripheral authors with high
edge-weight, and “tight-knit” nodes (blue circles) represent-
ing authors with many coauthors and homophilic neighbor-
hoods.

The rest of the paper is organized as follows: proposed
method, experimental results for the mining tasks outlined
above, related work, and conclusions.
1
RolX is a mixed-membership approach, which assigns each

node a distribution over the set of discovered roles.

2. PROPOSED METHOD
Given a network, the goal of RolX is to automatically dis-

cover a set of underlying (latent) roles, which summarize the
structural behavior of nodes in the network. RolX consists
of three components: feature extraction, feature grouping,
and model selection.

2.1 Feature Extraction
In its first step, RolX describes each node as a feature vec-

tor. Examples of node features are the number of neighbors
a node has, the number of triangles a node participates in,
etc. RolX can use any set of features deemed important.
Among the numerous choices for feature extraction from
graphs, we choose the structural feature discovery algorithm
described in [15] since it is scalable and has shown good per-
formance for a number of tasks. For a given node v, it ex-
tracts local and egonet features based on counts (weighted
and unweighted) of links adjacent to v and within and ad-
jacent to the egonet of v. It also aggregates egonet-based
features in a recursive fashion until no informative feature
can be added. Examples of these recursive features include
degree and number of within-egonet edges, as well as ag-
gregates such as “average neighbor degree” and “maximum
neighbor degree.” Again, RolX is flexible in terms of a fea-
ture discovery algorithm, so RolX ’s main results would hold
for other structural feature extraction techniques as well.

2.2 Feature Grouping
After feature extraction, we have n vectors (one per node)

of f numerical entries each. How should we create groups of
nodes with similar structural behavior/features? How can
we make it fully automatic, requiring no input from the user?

We propose to use soft clustering in the structural feature
space (where each node has a mixed-membership across var-
ious discovered roles); and specifically, an automatic version
of matrix factorization.

Given a node-feature matrix V
n⇥f

, the next step of the
RolX algorithm is to generate a rank r approximation GF ⇡

V where each row of G
n⇥r

represents a node’s membership
in each role and each column of F

r⇥f

specifies how mem-
bership in a specific role contributes to estimated feature
values. There are many methods to generate such an ap-
proximation (e.g., SVD, spectral decomposition) and RolX

is not tied to any particular approach. For this study, we
chose Non-negative Matrix Factorization because it is com-
putationally e�cient and non-negative factors simplify the
interpretation of roles and memberships.

Formally, we seek two non-negative low rank matrices G
and F to satisfy: argmin

G,F

kV �GFk
fro

, s.t. G � 0, F � 0,
where || · ||

fro

is the Frobenius norm. The non-negativity
constraint generally leads to a sparse, part-based represen-
tation of the original data set, which is often semantically
more meaningful than other factorization methods. While
it is di�cult to find the optimal factorization of a matrix be-
cause of the non-convexity of the objective function, several
e�cient approximation algorithms exist (e.g., multiplicative
update [18] and projective gradient decent [20]). RolX uses
multiplicative update because of its simplicity. It is worth
pointing out that RolX can naturally incorporate other vari-
ants of matrix factorization such as imposing sparseness con-
straint on F and/or G by incorporating some regularization
terms in the objective function [10]). RolX can also use a
general Bregman divergence [8] to measure approximation

39 T. Eliassi-Rad & C. Faloutsos ECML PKDD 2013 Tutorial 



Role Extraction: Model Selection 
•  Roles summarize behavior 

–  Or, they compress the feature matrix, V 
•  Use MDL to select the model size r that results in the best compression 

–  L: description length 
–  M: # of bits required to describe the model 
–  E: cost of describing the reconstruction errors in V – GF 
–  Minimize L = M + E 

•  To compress high-precision floating point values,  
RolX combines Llyod-Max quantization with  
Huffman codes 

•  Errors in V-GF are not distributed  
normally, RolX uses KL  
divergence to compute E 
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Role Extraction 
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Experiments on Role Discovery 
•  Role transfer 
•  Role sense-making 
•  Role query 
•  Role mixed-memberships 
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Details in Henderson et al. KDD 2012 
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Role Transfer 
•  Question: How can we use labels from 

an external source to predict labels on a 
network with no labels? 

•  Conjecture: Nodes with similar roles 
are likely to have similar labels 

Target Network 

Target Network 

External Network 

+ 
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Role Transfer = RolX + SL 

Target Network 

External Network 

Target Network 

r1 r2 r3

n1 .5 .5 0

n2 .2 .2 .6

n3 .25 .25 .5
...

r1 r2 r3

m1 .4 .4 .2

m2 0 0 1

m3 .2 .2 .6
...

Classifier 

f1 f2 f3 f4 …

r1 .4 1 0 3

r2 1 .2 0 0

r3 .1 1 5 0
...

Role Definitions 

(3) Role 
Assignment 

(1) RolX (2) Learning 

(4) Inference 

Role 
Memberships 

Role 
Memberships 

class

n1

n2

n3
...

P(class | role membership) 
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Data for Role Transfer 
IP-A1 IP-A2 IP-A3 IP-A4 IP-B 

# Nodes 81,450 57,415 154,103 206,704 181,267 

% labeled 36.7% 28.1% 20.1% 32.9% 15.3% 

# Links 968,138 432,797 1,266,341 1,756,082 1,945,215 

(# unique) 206,112 137,822 358,851 465,869 397,925 

Class 
Distribu-

tion 

IP#A1&Class&Distribu1on&

Web$ DNS$ P2P$
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Role Transfer Results 
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Figure 4: RolX provides better generalization per-

formance between enterprise IP networks A and

B (mean accuracy of RolX =85%, Feat=71%, p-

value=0.01).
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Figure 5: RolX chooses a high accuracy model size

of 9 roles, in the middle of the peak accuracy range

of 7-11 roles. The Y-axis depicts the mean classifi-

cation accuracy using RolX (over all 4 test sets) by

model size.

is right in the middle of the peak accuracy range shown in
Figure 5. Figure 6a shows that the model selection crite-
rion used by RolX is highly correlated with classification
accuracy (Pearson correlation is -0.91). Figure 6b shows the
default RolX model selection criterion decomposed into its
constituent parts. Model cost is the cost associated with
representing the model itself while error cost is the cost of
representing the di↵erences between the original feature val-
ues and the estimated feature values reconstructed using the
model. As expected, we see a consistent increase in model
cost and a consistent decrease in error cost as the number
of roles increases.

Figure 7 shows that IP tra�c classes are well-separated
in the RolX “role space”, with as few as 3 roles (extracted
from the original 373 structural features). Note that we
achieve even better separation with the automatically se-
lected model size of 9 roles (see Figure 4), but we can only
clearly visualize up to 3.

We omit for brevity the “sensemaking” table for the 3-role
IP experiment. It shows that Roles 1 and 2 are lower-volume
IPs while Role 3 is high-volume servers or P2P nodes. Role
3 contains nodes of all three types (Web, DNS, P2P). This
Role is overloaded since the model size of 3 is not as predic-
tive as larger model sizes (see Figure 5).

Reality Mining Device data: Using the Reality Mining
Device dataset, we conducted two sets of transfer learning
experiments. The first set of experiments involves a binary
classification task where we try to predict whether a given
subject is a business school student or not. The second
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Figure 6: RolX ’s model selection is e↵ective: (a)

Classification accuracy is highest when RolX selec-

tion criterion is minimized. Red markers indicate

the peak performing model sizes of 7-11 roles (b)

RolX ’s model selection criterion balances model size

and reconstruction accuracy.

set is similar, where we try to predict whether a subject
is a graduate student in the Media Lab or not. As train
and test sets, we used each pair of consecutive months in
our dataset. In Figure 8, we show the accuracy of RolX .
The Baseline is a classifier that learns to always predict the
majority class of the training set on the test set. The time
labels denote the month for the train data, and the month
following that is used as the test data. We also use all the
data in 2004 and 2005 as train and test data, respectively.
Notice that RolX outperforms the baseline classifier most of
the time with an average of 83% and 76% accuracy for the
two experiment sets, respectively. We notice that RolX ’s
accuracy drops when September and May data is used as
training, possibly because these months correspond to the
start and end of the school semesters; the behavior of the
subjects would be generally di↵erent than usual in these
months, thus providing not as much predictive information
as the other months would.

4. STRUCTURAL SIMILARITY
Here we describe experiments in which RolX is used for

its most basic task: grouping nodes based on their structural
similarity.

4.1 Network Sciences Coauthorship data:
Our first data set is the weighted Network Science Co-

authorship Graph with 1589 authors (from the network sci-
ence community) and 2743 weighted edges [25]. Figure 9
shows (a) the role-colored graph (where each node is col-

Roles generalize across disjoint networks & 
enable prediction without re-learning 
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Model Selection 
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Model Selection (continued) 
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Role Space 

IP trace classes are  
well-separated in the 
RolX role space with  

as few as 3 roles 
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Figure 4: RolX provides better generalization per-

formance between enterprise IP networks A and

B (mean accuracy of RolX =85%, Feat=71%, p-

value=0.01).
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Figure 5: RolX chooses a high accuracy model size

of 9 roles, in the middle of the peak accuracy range

of 7-11 roles. The Y-axis depicts the mean classifi-

cation accuracy using RolX (over all 4 test sets) by

model size.

is right in the middle of the peak accuracy range shown in
Figure 5. Figure 6a shows that the model selection crite-
rion used by RolX is highly correlated with classification
accuracy (Pearson correlation is -0.91). Figure 6b shows the
default RolX model selection criterion decomposed into its
constituent parts. Model cost is the cost associated with
representing the model itself while error cost is the cost of
representing the di↵erences between the original feature val-
ues and the estimated feature values reconstructed using the
model. As expected, we see a consistent increase in model
cost and a consistent decrease in error cost as the number
of roles increases.

Figure 7 shows that IP tra�c classes are well-separated
in the RolX “role space”, with as few as 3 roles (extracted
from the original 373 structural features). Note that we
achieve even better separation with the automatically se-
lected model size of 9 roles (see Figure 4), but we can only
clearly visualize up to 3.

We omit for brevity the “sensemaking” table for the 3-role
IP experiment. It shows that Roles 1 and 2 are lower-volume
IPs while Role 3 is high-volume servers or P2P nodes. Role
3 contains nodes of all three types (Web, DNS, P2P). This
Role is overloaded since the model size of 3 is not as predic-
tive as larger model sizes (see Figure 5).

Reality Mining Device data: Using the Reality Mining
Device dataset, we conducted two sets of transfer learning
experiments. The first set of experiments involves a binary
classification task where we try to predict whether a given
subject is a business school student or not. The second
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Figure 6: RolX ’s model selection is e↵ective: (a)

Classification accuracy is highest when RolX selec-

tion criterion is minimized. Red markers indicate

the peak performing model sizes of 7-11 roles (b)

RolX ’s model selection criterion balances model size

and reconstruction accuracy.

set is similar, where we try to predict whether a subject
is a graduate student in the Media Lab or not. As train
and test sets, we used each pair of consecutive months in
our dataset. In Figure 8, we show the accuracy of RolX .
The Baseline is a classifier that learns to always predict the
majority class of the training set on the test set. The time
labels denote the month for the train data, and the month
following that is used as the test data. We also use all the
data in 2004 and 2005 as train and test data, respectively.
Notice that RolX outperforms the baseline classifier most of
the time with an average of 83% and 76% accuracy for the
two experiment sets, respectively. We notice that RolX ’s
accuracy drops when September and May data is used as
training, possibly because these months correspond to the
start and end of the school semesters; the behavior of the
subjects would be generally di↵erent than usual in these
months, thus providing not as much predictive information
as the other months would.

4. STRUCTURAL SIMILARITY
Here we describe experiments in which RolX is used for

its most basic task: grouping nodes based on their structural
similarity.

4.1 Network Sciences Coauthorship data:
Our first data set is the weighted Network Science Co-

authorship Graph with 1589 authors (from the network sci-
ence community) and 2743 weighted edges [25]. Figure 9
shows (a) the role-colored graph (where each node is col-
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Automatically Discovered Roles 

Network Science Co-authorship Graph  
[Newman 2006] 

bridge 
cliquey 
periphery 
isolated 
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Role Affinity Heat Map 

Network Science Co-authorship Graph  
[Newman 2006] 

bridge 
cliquey 
periphery 
isolated 
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Making Sense of Roles 

cliquey bridge periphery isolated 

0 

2 

4 

6 

8 

10 

12 

14 
D

eg
re

e 

Av
g.

 W
ei

gh
t 

C
lu

st
er

in
g 

C
oe

ff.
 

E
cc

en
tri

ci
ty

 

P
ag

eR
an

k 

G
at

eK
ee

pe
r 

G
at

eK
ee

pe
r-

Lo
ca

l 

P
iv

ot
 

S
tru

ct
ur

al
 H

ol
e 

R
ol

e 
1 

R
ol

e 
2 

R
ol

e 
3 

R
ol

e 
4 

NodeSense NeighborSense 

Role 1 Role 2 Role 3 Role 4 Default 

Neighbor Sense: GQ≈N 

R
ol

e-
co

nt
rib

ut
io

n 
to

 N
od

e-
m

ea
su

re
m

en
t  

Node Sense: GE≈M 

R
ole A

ffinities 

52 T. Eliassi-Rad & C. Faloutsos ECML PKDD 2013 Tutorial 



Making Sense of Roles 
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Roles can be interpreted using topological measures & role homophily 
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Mixed Membership over Roles 

Bright blue nodes are 
peripheral nodes 

Bright red nodes are 
locally central nodes 

Amazon Political Books Co-purchasing Network 
[V. Krebs 2000] 

conservative 
liberal 

neutral 

Purchasing behavior of customers is captured by separating the 
“locally central” books from the “locally peripheral” books 
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Role Query 

Node Similarity for M.E.J. Newman 
(bridge) 

Node Similarity for F. Robert (cliquey) 

Node Similarity for J. Rinzel (isolated) 

Mixed-membership roles 
enable us to measure 

similarity of nodes based 
on their role memberships 
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GLRD: Guided Learning for Role Discovery 

•  Introduced by Sean Gilpin et al. 
•  RolX is unsupervised 

•  What if we had guidance on roles? 
–  Guidance as in weak supervision encoded as constraints 

•  Types of guidance 
–  Sparse roles 

–  Diverse roles 

–  Alternative roles, given a set of existing roles 
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GLRD 
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GLRD 
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Adding Constraints 
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GLRD Framework 
•  Constraints on columns of G (i.e., role assignments) or rows of 

F (i.e. role definitions) are convex functions 

 
•  Use an alternative least squares (ALS) formulation 

–  Do not alternate between solving for the entire G and F 
–  Solve for one column of G or one row of F at a time 

•  This is okay since we have convex constraints 

the formulation into a series of convex programming prob-
lems, which are generally easy to solve.

minimize
G,F

||V �GF||2

subject to gi(G)  dGi, i = 1, . . . , tG

fi(F)  dFi, i = 1, . . . , tF

(2)

where gi and fi are convex functions.

An ALS Formulation.

Rather than alternating between solving for the entire ma-
trices G and F, we can instead solve for one column of G or
one row of F at a time. This is possible if convex constraints
can be specified in terms of these columns, which is the case
in this work. Without loss of generality, Equation 3 shows
an individual sub-optimization problem in terms of one of
the columns of G, denoted x.

Gk = minimize
x

||R� xFk||2

subject to: gi(x)  dGi, i = 1, . . . , tG
(3)

In Equation 3, R represents the residuals of all other fac-
tors not being solved for (sum of outer products of corre-
sponding columns of G and rows F). Fk is the k

th row
of the role/feature explanation matrix that corresponds to
the k

th column of the role assignment matrix. So with this
formulation, we alternate between learning single role as-
signments, followed by learning a role definition. Next we
explain how we solve the convex constrained problem shown
in Equation 3.

Solving The Constrained Least Squares Problem.

Our projection method is as follows. First, solve Equation
3 with all constraints removed using standard least squares
solvers. Second, find the closest point to the unconstrained
solution, that satisfies the given constraints. This projec-
tion method takes advantage of standard and very fast least
squares solvers and the subsequent nearest feasible point
problem is relatively simple to solve. In addition, Lemma 1
shows that performing these two steps will exactly solve the
original problem in Equation 3. Applications of this theorem
and its proof can be found in [6][13].

Lemma 1. Projection Equivalence Result. The following
constrained optimization problem:

minimize
x

||B� xa||2

subject to: ci(x)  di, i = 1, . . . , n
(4)

where ci are convex functions on x, is equivalent to:

minimize
x

||x⇤ � x||2

subject to: ci(x)  di, i = 1, . . . , n
(5)

where x⇤ is the optimal to the optimization problem in Equa-
tion 4 without contraints.

This leads to the following algorithm for convex constrained
NMF presented in Figure 1. Like ALS for unconstrained
NMF, this heuristic is not guaranteed to meet a global opti-
mum, even though all subproblems are solved exactly. How-
ever, each step will lead to a reduction in the global objective

(Equation 2). Thus, in practice the algorithm will find local
minima that meet all specified constraints.

Inputs:

• V: Node feature matrix containing n nodes described
by f topological structure features.

• gi(x),fi(x): Convex constraints on columns of G and
rows of F respectively.

• r: Number of roles (methods for learning r described
in previous work [14]).

Outputs:

• G: Role assignment matrix that satisfying all con-
straints.

• F: Role definition matrix that satisfying all con-
straints.

Algorithm:

while reconstruction error decreases do
{

for k = 1 . . . r //Recalculate each role.
{

1. Calculate R = V �G•( 6=k)F( 6=k)•

2. Calculate G•k by solving for x as follows:

(a) x⇤ = argmin
x

||R� xF
k•||2

(b) G•k = argmin
x

||x⇤�x||2 s.t. gi(x)  ✏i : 8i

3. Calculate Fk• by solving for x as follows:

(a) x⇤ = argmin
x

||R� xG•k||2

(b) Fk• = argmin
x

||x⇤�x||2 s.t. fi(x)  ✏i : 8i

}
}

Figure 1: Our algorithm that will be used to encode
all guidances described in Section 4. The algorithm
uses a least squares approach and allows additional
convex constraints to be added to the NMF formu-
lation.

The advantage of solving for one role at a time rather than
the entirety of G or F as is generally done with ALS, is that
it allows the problem to be broken down into smaller parts
that then fit into fast solvers. In general, projection meth-
ods have been found to be better suited to larger problems
and we found this to be the case as well. Using this method
allows us to solve much larger problems than we had previ-
ously been able to using standard constrained optimization
solvers [8]. The final constrained optimization problem (i.e.,
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Guidance Overview 

Guidance 
Type 

Effect of increasing guidance 
on role assignment (G) on role definition (F) 

Sparsity 
Reduces the number of nodes 
with minority memberships 

in roles 

Decreases likelihood that features 
with small explanatory benefit  

are included 

Diversity 
Limits the amount of 
allowable overlap in 

assignments 

Roles must be explained with 
completely different  

sets of features 

Alternative 
Decreases the allowable 

similarity between the two 
sets of role assignments 

Ensures that role definitions are 
very dissimilar between the two 

sets of role assignments 
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Sparsity 

closest constrained point problem) is simple enough that we
find for even medium-sized problems we could utilize high
level solvers such as CVX [7][12], which makes experiment-
ing with new types of constraints very simple.

4. FRAMEWORK FOR FLEXIBLE SUPER-
VISION

In the previous section, we discussed a novel and general
algorithm that can easily handle convex constraints. Convex
constraints can encode a variety of useful guidances. In this
section, we show how they can be used to enforce sparsity,
diversity and alternativeness. In the experimental section,
we show applications which exploit these forms of guidance.

4.1 Sparsity
The area of sparsity has recently attracted much atten-

tion. In a general context, sparsity has been shown to have
two main benefits: (1) parsimony and (2) improved predic-
tive performance, with the later being motivated by Occam’s
razor. Sparse learning formulations exist for many learning
settings such as linear regression (LASSO), Kernel methods
(SVM) and covariance estimation.

In our work, we can place sparsity constraints on both the
G or F matrices leading to an objective function of:

argmin
G,F

||V �GF||2

subject to: G � 0,F � 0

8i ||G•i||1  ✏G

8i ||F
i•||1  ✏F

where ✏G and ✏F define upperbounds for
the sparsity constraints (amount of
allowable density).

(6)

Previous works have shown the e↵ectiveness of using L1
norm as a penalty in model learning. In our formulation the
L1 penalty is encoded as a constraint rather than a penalty
in the objective, but it is known that these formulations are
theoretically equivalent [5]. However, another twist to our
formulation is that we do not constrain the entire matrix
but instead constrain each column of G and each row of
F. This was done because our solver requires constraints
to be formulated only over one role vector at a time. The
e↵ect of this technical di↵erence is that the sparsity must
be more uniformly spread across each role definition or role
assignment which is a benefit of this method.

Sparsity constraints on G and F have easy to understand
intuitive interpretations. If G is sparse, it means that nodes
are assigned to as few roles as possible; and it is possible
for some nodes to be assigned to no roles. If F is sparse,
it means that the roles are defined with respect to as few
features as possible. Both of these extensions allow for a
simple explanation of the data, and lead to improved pre-
diction performance.

4.2 Diversity
In the NMF forms of role discovery, nothing prevents the

roles to which nodes are assigned (i.e., the G matrix) and
the role definitions (i.e., the F matrix) to be highly overlap-
ping. This can be undesirable particularly for the F matrix
since it means all roles are highly similar. This can be over-
come by enforcing a diversity requirement so that each role

Figure 2: Visualization of diversity constraints on
role explanation matrix F (roles ⇥ features) for
DBLP dataset. The top matrix shows the uncon-
strained result; the bottom matrix is constrained to
be completely diverse (✏ = 0); and the middle matrix
shows a middle ground. From the top matrix to the
bottom matrix, the number of black cells (i.e. zero
values) increases since roles definitions must be ex-
plained with completely di↵erent sets of features.

uses a di↵erent set of features (for the F matrix) and nodes
are assigned to di↵erent combinations of roles (for the G
matrix).
Our formulation for role allocation diversity (G matrix)

and role definition diversity (F matrix) makes use of orthog-
onality as follows:

argmin
G,F

||V �GF||2

subject to: G � 0,F � 0

8i, j GT
•iG•j  ✏G i 6= j

8i, j Fi•.F
T
j•  ✏F i 6= j

where ✏G and ✏F define upperbounds on
how angularly similar role assign-
ments and role definitions can be to
each other.

(7)

When ✏ = 0, our constraint will exactly match the def-
inition orthogality, and when ✏ � 0 the constraint can be
viewed as limiting the angular similarity between two vec-
tors. The e↵ect of combining this constraint with non-
negativity constraints is that no role definitions will have
any common features and no role assignments will have over-
lapping populations for ✏ = 0. This is so since GT

•iG•j = 0
if and only if these two vectors do not share any non-zero
entries. Figure 2 shows such an example, where none of the
three roles have any overlapping features. In the context of
our solver which solves for one vector at a time, this con-
straint will be linear (a weighted sum).

4.3 Alternative Role Discovery
Recent work on another unsupervised problem, clustering,

has explored the area of alternativeness [24, 9]. In that liter-
ature, the term alternativeness and orthogonality are used
interchangeably, but we only use the term alternativeness
for clarity.
The motivation for alternativeness in unsupervised learn-

ing is strong. Most interesting problems are on large data
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Diversity          

closest constrained point problem) is simple enough that we
find for even medium-sized problems we could utilize high
level solvers such as CVX [7][12], which makes experiment-
ing with new types of constraints very simple.

4. FRAMEWORK FOR FLEXIBLE SUPER-
VISION

In the previous section, we discussed a novel and general
algorithm that can easily handle convex constraints. Convex
constraints can encode a variety of useful guidances. In this
section, we show how they can be used to enforce sparsity,
diversity and alternativeness. In the experimental section,
we show applications which exploit these forms of guidance.

4.1 Sparsity
The area of sparsity has recently attracted much atten-

tion. In a general context, sparsity has been shown to have
two main benefits: (1) parsimony and (2) improved predic-
tive performance, with the later being motivated by Occam’s
razor. Sparse learning formulations exist for many learning
settings such as linear regression (LASSO), Kernel methods
(SVM) and covariance estimation.

In our work, we can place sparsity constraints on both the
G or F matrices leading to an objective function of:

argmin
G,F

||V �GF||2

subject to: G � 0,F � 0

8i ||G•i||1  ✏G

8i ||F
i•||1  ✏F

where ✏G and ✏F define upperbounds for
the sparsity constraints (amount of
allowable density).

(6)

Previous works have shown the e↵ectiveness of using L1
norm as a penalty in model learning. In our formulation the
L1 penalty is encoded as a constraint rather than a penalty
in the objective, but it is known that these formulations are
theoretically equivalent [5]. However, another twist to our
formulation is that we do not constrain the entire matrix
but instead constrain each column of G and each row of
F. This was done because our solver requires constraints
to be formulated only over one role vector at a time. The
e↵ect of this technical di↵erence is that the sparsity must
be more uniformly spread across each role definition or role
assignment which is a benefit of this method.

Sparsity constraints on G and F have easy to understand
intuitive interpretations. If G is sparse, it means that nodes
are assigned to as few roles as possible; and it is possible
for some nodes to be assigned to no roles. If F is sparse,
it means that the roles are defined with respect to as few
features as possible. Both of these extensions allow for a
simple explanation of the data, and lead to improved pre-
diction performance.

4.2 Diversity
In the NMF forms of role discovery, nothing prevents the

roles to which nodes are assigned (i.e., the G matrix) and
the role definitions (i.e., the F matrix) to be highly overlap-
ping. This can be undesirable particularly for the F matrix
since it means all roles are highly similar. This can be over-
come by enforcing a diversity requirement so that each role

Figure 2: Visualization of diversity constraints on
role explanation matrix F (roles ⇥ features) for
DBLP dataset. The top matrix shows the uncon-
strained result; the bottom matrix is constrained to
be completely diverse (✏ = 0); and the middle matrix
shows a middle ground. From the top matrix to the
bottom matrix, the number of black cells (i.e. zero
values) increases since roles definitions must be ex-
plained with completely di↵erent sets of features.

uses a di↵erent set of features (for the F matrix) and nodes
are assigned to di↵erent combinations of roles (for the G
matrix).
Our formulation for role allocation diversity (G matrix)

and role definition diversity (F matrix) makes use of orthog-
onality as follows:

argmin
G,F

||V �GF||2

subject to: G � 0,F � 0

8i, j GT
•iG•j  ✏G i 6= j

8i, j Fi•.F
T
j•  ✏F i 6= j

where ✏G and ✏F define upperbounds on
how angularly similar role assign-
ments and role definitions can be to
each other.

(7)

When ✏ = 0, our constraint will exactly match the def-
inition orthogality, and when ✏ � 0 the constraint can be
viewed as limiting the angular similarity between two vec-
tors. The e↵ect of combining this constraint with non-
negativity constraints is that no role definitions will have
any common features and no role assignments will have over-
lapping populations for ✏ = 0. This is so since GT

•iG•j = 0
if and only if these two vectors do not share any non-zero
entries. Figure 2 shows such an example, where none of the
three roles have any overlapping features. In the context of
our solver which solves for one vector at a time, this con-
straint will be linear (a weighted sum).

4.3 Alternative Role Discovery
Recent work on another unsupervised problem, clustering,

has explored the area of alternativeness [24, 9]. In that liter-
ature, the term alternativeness and orthogonality are used
interchangeably, but we only use the term alternativeness
for clarity.
The motivation for alternativeness in unsupervised learn-

ing is strong. Most interesting problems are on large data
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Alternativeness 

Table 1: Summary of e↵ects of constraints on both role assignment G and role definitions F (see Section 4
for formulation of each constraint type).

Role Assignment Role Definition

Sparsity Encourages role assignments to be more defini-
tive. Increasing the strength of constraint re-
duces the number of nodes that have minority
membership in role.

Increases the ability to interpret role definitions
by ensuring that the definitions only use fea-
tures most strongly correlated with each role.
Increasing the strength of constraint decreases
the likelihood that features with small explana-
tory benefit are included.

Diversity Roles cannot have memberships that are too
similar. No two roles can have exactly the
same membership assignment. Increasing the
strength of the constraint limits the amount of
allowable overlap in assignments.

Roles cannot have definitions that are too sim-
ilar. No two roles can have redundant explana-
tions and increasing the strength of constraint
ensures that roles must be explained with com-
pletely di↵erent sets of features.

Alternative Find a set of roles that lends itself to a di↵erent
role assignment than a given role assignment.
Increasing the strength of constraint, decreases
the allowable similarity between the two.

Learn a role definition matrix that is signifi-
cantly di↵erent than a given role definition. In-
creasing the strength of constraint ensures that
the definitions must be very dissimilar.

sets that contain complex phenomena and there may exist
multiple explanations of the data. However, most unsuper-
vised learning algorithms expect that there exists only one
good explanation of the data and return one explanation.

In many situations, it may be the case that the returned
explanation is undesirable since it is either unactionable or
not novel. Consider the IMDB (Internet Movies Database)
dataset. If the resultant roles map actors to the studios for
which they work, then this is not particularly novel. Here,
the work on alternative role discovery allows a previously
discovered set of role allocations (G⇤) or role definitions (F⇤)
to be specified as a counter-example of what not to find. The
challenge though is to find another good explanation of the
data that is di↵erent to those already found.

The optimization problem to find alternative roles is then:

argmin
G,F

||V �GF||2

subject to: G � 0,F � 0

8i, j G⇤T
•i G•j  ✏G

8i, j F⇤
i•F

T
j•  ✏F

where ✏G and ✏F define upperbounds on
how similar the results can be to G⇤

and F⇤.

(8)

5. EXPERIMENTS
Our experiments demonstrate how constraints on graph

role discovery can be useful. Role discovery requires the
user to specify the number of roles to use and a set of fea-
tures for a graph. For the former, we used the Minimum
Description Length (MDL) described in [14] to automati-
cally select the number of roles; and for the later, we used
the approach described in [15]. We show that role discovery
can be used to improve the results of the identity resolution
problem between two graphs, and that they can be further
improved by using sparsity or diversity constraints. By using
sparsity or diversity constraints, we improve the role defini-
tions which leads to more meaningful role assignments and
more accurate identity resolutions. See Section 5.1 for these

experiments. We also experimentally verify the solutions to
the alternative role discovery formulation presented in Sec-
tion 4.3 and observe that they indeed produce significantly
di↵erent results. The purpose of our experimental section is
to address the questions:

1. Does adding constraints to the NMF-based role dis-
covery formulation improve the quality of the result-
ing role explanations and assignments? Figures 3 and
4 show that constraints improve the results of identity
resolution.

2. What e↵ects do diversity constraints have on role dis-
covery results? Figures 3 and 4 show how diversity
constraints can improve role discovery results even more
so than sparsity constraints.

3. Can our alternative role discovery formulation produce
significantly di↵erent results? Tables 3 and 4 shows
that our formulation can produce results that are sig-
nificantly di↵erent than a given set of roles or commu-
nity assignments respectively.

5.1 Sparse and Diverse Identity Resolution in
Co-authorship Graphs

In this experiment, we show that by adding sparsity and
diversity constraints to the NMF formulation of role discov-
ery, the resulting role definitions are of higher quality. We
measure this improvement in quality indirectly by showing
how role definition matrices can be used for resolving iden-
tities of nodes across graphs, and that constrained role def-
initions perform better than unconstrained role definitions
for that problem.
From the DBLP data-set [17], we extracted a co-author

graph from each of the following related conferences from
2005 to 2009: KDD, ICDM, SDM, CIKM, SIGMOD, VLDB
(see Table 2 for detailed information about each co-author
graph). We extract a set of relevant structure features for
the KDD graph using REFEX [15], and compute these same
features for all of the co-author graphs. We subsequently
learn a set of role definitions from the KDD graph using
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Diverse Roles and Sparse Roles 
•  Question: Can diversity and sparsity constraints create better 

role definitions? 
•  Conjecture:  Better role definitions will better facilitate other 

problems such as identity resolution across graphs 
•  Experiment:  Compare graph mining results using various 

methods for role discovery 
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Figure 3: Comparison of role discovery techniques for identity resolution across graphs. Role definitions are
learned from the KDD co-authorship graph; then, authors from the other (conference) co-authorship graphs
are assigned to these roles using various techniques. In particular, we show results for ReFeX (features only),
RolX (unconstrained role discovery), GLRD-Sparse (role discovery with sparsity constraints), and GLRD-
Diverse (role discovery with diversity constraints). Authors from each conference are paired with increasing
number of nearest neighbors from KDD conference (x-axis) and the resulting recall is reported (y-axis).
Across most settings role definitions using sparsity and diversity constraints lead to better identity resolution
results than standard unconstrained RolX. For graphs that are most similar in nature to KDD (e.g. ICDM,
SDM, CIKM) the transfer of role definitions lead to better results than simply using structural features of
nodes directly. Note that the recall values are relatively low because the set sizes (on the x-axis) are small
compared to the population size in each graph.

Network |V| |E| k |LCC| #CC
VLDB 1,306 3,224 4.94 769 112
SIGMOD 1,545 4,191 5.43 1,092 116
CIKM 2,367 4,388 3.71 890 361
SIGKDD 1,529 3,158 4.13 743 189
ICDM 1,651 2,883 3.49 458 281
SDM 915 1,501 3.28 243 165

Table 2: Information about DBLP co-author
networks for each conference. Data was col-
lected for five years (2005-2009). |V|=number
of vertices, |E|=number of edges, k=average de-
gree, |LCC|=size of largest connected component,
#CC=number of connected components.

standard RolX [14] as well as the sparse and diverse ver-
sions of GLRD. For each of these competing role definitions,
we assign each vertex from each graph to the roles whose
function they most exhibit. As a baseline, we also explore
author identification without roles by using the raw graph
features as described in ReFeX.
We use the role assignments to resolve the identities of

vertices from each graph (namely, ICDM, SDM, CIKM, SIG-
MOD, and VLDB) to the vertices in the KDD graph. With-
out loss of generality, assume we are resolving identity of au-
thors from the KDD graph to the authors in ICDM graph.
For each author in both conferences, we select the corre-
sponding row vector from the node by role matrix Gkdd and
find the k closest neighbors (row vectors) from Gicdm. If
the original author from KDD graph is present in the set of
k closest neighbors, we count the result as a match. We re-
peat this experiment using sparsity and diversity constraints
on Fkdd. We also repeat the experiment using the ReFeX
features, comparing author feature vectors from Vkdd and
Vicdm. Figures 3 and 4 shows how the di↵erent decompo-

DBLP Co-authorship Networks from 2005-2009 
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Figure 4: Comparison of role discovery techniques
for identity resolution experiments. Authors from
each conference paired with the nearest 32 neighbors
from KDD conference; the resulting recall accuracy
is reported. The percentage number (on the x-axis)
is the fraction of authors that overlap between the
two conferences. Nearly all experiments show better
results with sparsity and diversity constraints except
when the authors do not share similar roles in the
two conferences (SIGMOD and VLDB).

sition methods compare in this setting for all graphs paired
with KDD.

Our method of utilizing role discovery results for the au-
thor identification task is described formally in the following
set of steps:

1. Extract features from co-authorship graphs to get graph
features (e.g. Vkdd,Vicdm) using ReFeX.

2. From the graph features matrix Vkdd perform role dis-
covery to obtain Gkdd and Fkdd.

3. Transfer the role definition matrix Fkdd (role by fea-
ture matrix) to other graphs (e.g. Vicdm) by solving
Equation 9.

Gicdm = min
G

||Vicdm �GFkdd||2 s.t. G � 0 (9)

Our experiments with graph identity-resolution show that
diversity and sparseness constraints almost universally im-
prove the quality of learned role-definition matrix. This is
not unexpected since there is a long tradition in machine
learning of using sparsity to prevent overfitting. As men-
tioned previously we can view diversity as enforcing sparsity
since a diverse set of roles as per our definition do not share
many overlapping features and hence each role definition is
concise.

Figure 3 shows that role definitions learned using sparsity
and diversity outperform standard unconstrained role dis-
covery (RolX) in almost every setting and problem parame-
terization. Figure 4 more clearly shows the general trend by
considering the results for a particular problem parameteri-
zation. In that figure, we observe that diversity constraints
lead to the most improvement over RolX, while sparsity im-
provements are lesser. We also observe that transferring the
KDD role definitions to some graphs (like VLDB and SIG-
MOD) does not compare well to the baseline method that
does not use any roles (such as ReFeX). We believe this is
because the same participants in conferences such as VLDB

and SIGMOD do not have a similar role to the ones they
play in KDD; and hence, using the raw features (without
roles) produces better results.
We believe that sparsity improves the quality of role defi-

nitions by reducing the ability of unconstrained NMF-based
role discovery to overfit the problem. Features that only
slightly add to the definition of a role are more likely to be
explaining noise; and by forcing those values to zero, we end
up with more robust definitions. Furthermore, the diversity
constraints help by removing redundancy in role definitions,
which leads to definitions that are more easily comparable.
For example, if a feature is used to define every role, then it
is not essential in defining any of them.

5.2 Alternative Roles
In this section, we show that our alternative role discov-

ery formulation (presented in Section 4.3) can discover sig-
nificantly di↵erent role definitions, as well as show that the
formulation can be used to improve the role definitions when
there are ground-truth communities. In Table 3, we show
the di↵erence between an alternative role discovery result
and an original role definition found using unconstrained
role discovery (via RolX). In Table 4, we show that we can
use our formulation to get more consistent assignments of
roles when ground-truth communities are known.
In our first experiment, we explore the di↵erence between

the roles of the original and alternative role discovery. Using
the KDD co-authorship graph, we find a set of roles and con-
strain a new solution to have a significantly di↵erent role def-
inition (F matrix). We then compare the results by assign-
ing each vertex to its most dominant role in both results to
create two separate partitions of the vertices. We then mea-
sure the di↵erence between the two partitions using Jaccard
distance. Table 3 shows that all of the Jaccard distances are
far from 0 meaning that the alternative role assignments are
very di↵erent than the original ones. Figure 5 illustrates the
alternative roles found in the largest connected component
of the KDD coauthorship graph. Note, the reader can zoom
in on this figure to read the names of each author. The fol-
lowing is a description of the original roles and the roles that
GLRD(Alternative) found. These description are based on
sense-making analysis [14]. As the descriptions show these
roles are capturing alternative concepts.

R1(alt) R2(alt) R3(alt) R4(alt)
R1 0.946 0.510 0.762 0.913
R2 1.000 0.971 0.810 0.739
R3 1.000 0.7942 1.000 1.000
R4 0.345 0.991 1.000 0.982

Table 3: Jaccard distance matrix comparing original
role assignments (rows) to alternative role assign-
ments (columns). Jaccard distance of 0 represents
an exact match between clustering and 1 represents
no overlap. The relative error for the two decom-
positions was similar: 0.12% and .5% (where relative
error is error = ||V �GF||/||V||).

Original Roles:

Role 1: Nodes here have high eccentricity. These are
periphery nodes.
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Alternative Roles 
•  Question:  Do alternative sets of roles exist in 

graphs and can they be discovered? 
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Alternative Roles 

Role 2: Nodes here have high eccentricity and high clus-
tering coe�cient. These are periphery nodes that are
cliquey.

Role 3: Nodes here have high degree and high clustering
coe�cient. These are highly connected cliquey nodes.

Role 4: Nodes here have high PageRank, high degree,
and high biconnected components numbers. These are
globally central stars and brokers.

Alternative Roles:

Role 1: Nodes here have high PageRank and high bicon-
nected component numbers. These are globally central
and brokers.

Role 2: Nodes here have high clustering coe�cient but
not high eccentricity. These are non-periphery nodes
that are cliquey.

Role 3: Nodes here have high eccentricity and high clus-
tering coe�cient. These are periphery nodes that are
cliquey.

Role 4: Nodes here have high eccentricity and high de-
gree. These are periphery nodes that are locally stars.
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Figure 5: A visualization of our alternative role dis-
covery results for the KDD co-authorship graph’s
largest connected component. All the colored nodes
belong to the same primary role under the origi-
nal factorization. However, they belong to di↵erent
primary roles under the alternative factorization, as
indicated by the various colors. We observe that
the alternative roles are able to separate the 3 blue
“local-star” nodes (namely, Jun Zhu, Lei Zhang, and
Evimaria Terzi) from the red “global-broker” nodes
(namely, Christos Faloutsos, Heikki Mannila, Vipin
Kumar, etc). The alternative roles also separate out
the 4 yellow “periphery-cliquey” nodes. Note, the
reader can zoom in on this figure to read the names
of each author.

We next experiment with a YouTube dataset, which is a
network of users with known ground-truth communities [22].

This graph was created by crawling the YouTube site in 2007
and creating directed edges between a pair of users a and b

if a’s profile page linked to b’s profile page. Ground-truth
communities were assigned by collecting all users belong-
ing to the same group, which were pages that allowed com-
munications between users on given topics. The graph has
1,134,890 vertices, 2,987,624 edges, and 8,385 communities.
We selected all communities with over 100 users of which
there were 105. The largest community has 2,217 users.
There is an inherent complementariness between role dis-

covery and community detection. The former is about struc-
tural similarity; while the latter is based on proximity in the
graph. Role discovery finds functions/roles of users but does
not find the communities themselves. However, there may
be multiple interesting sets of communities within the same
network and those communities may be characterized by
very di↵erent roles. In this experiment, we encode the set
of ground-truth communities for which our role discovery
technique should find roles.
The way we encode the YouTube ground-truth commu-

nities into our analysis is by providing the communities as
G⇤ to our alternative role discovery formulation. This will
force our discovered roles to have a role assignment that is
di↵erent than ground-truth communities, which matches the
semantic relationship between the two problems.
To evaluate the e↵ectiveness of this result we measured

the proportion of members in each community belonging to
each role. We then calculated the standard deviation over all
such communities per role and report the results in Table 4.
The assumption for this evaluation is that each role should
be equally represented in each community. Our results show
that the alternative role discovery formulation can indeed be
used to normalize the roles with respect to a set of ground-
truth communities. After applying sense-making [14], the
six roles that our GLRD(Alternative) finds are as follows:

Alternative Role 1: Nodes here are global hubs. They
have high PageRank values, high out-degrees, and high
biconnected component numbers.

Alternative Role 2: Nodes here are on the periphery of
the graph. They have higher than default eccentricity.

Alternative Role 3: Nodes here are authorities. They have
high PageRank values and high in-degrees.

Alternative Role 4: Nodes here are very cliquey. They
have high clustering coe�cients.

Alternative Role 5: Nodes here are local hubs. They have
high out-degrees and high biconnected component num-
bers.

Alternative Role 6: Nodes here are the majority of the
population; they are the “regular” folks. They have a
local neighborhood that is more cliquey than expected
but otherwise nothing special stands out.

6. CONCLUSION
Role discovery is an emerging and important area of graph

mining. It looks at discovering nodes that perform similar
functions in networks, but do not necessarily belong to the
same community. Existing work so far has been completely

Role 2: Nodes here have high eccentricity and high clus-
tering coe�cient. These are periphery nodes that are
cliquey.

Role 3: Nodes here have high degree and high clustering
coe�cient. These are highly connected cliquey nodes.

Role 4: Nodes here have high PageRank, high degree,
and high biconnected components numbers. These are
globally central stars and brokers.

Alternative Roles:

Role 1: Nodes here have high PageRank and high bicon-
nected component numbers. These are globally central
and brokers.

Role 2: Nodes here have high clustering coe�cient but
not high eccentricity. These are non-periphery nodes
that are cliquey.

Role 3: Nodes here have high eccentricity and high clus-
tering coe�cient. These are periphery nodes that are
cliquey.

Role 4: Nodes here have high eccentricity and high de-
gree. These are periphery nodes that are locally stars.
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Figure 5: A visualization of our alternative role dis-
covery results for the KDD co-authorship graph’s
largest connected component. All the colored nodes
belong to the same primary role under the origi-
nal factorization. However, they belong to di↵erent
primary roles under the alternative factorization, as
indicated by the various colors. We observe that
the alternative roles are able to separate the 3 blue
“local-star” nodes (namely, Jun Zhu, Lei Zhang, and
Evimaria Terzi) from the red “global-broker” nodes
(namely, Christos Faloutsos, Heikki Mannila, Vipin
Kumar, etc). The alternative roles also separate out
the 4 yellow “periphery-cliquey” nodes. Note, the
reader can zoom in on this figure to read the names
of each author.

We next experiment with a YouTube dataset, which is a
network of users with known ground-truth communities [22].

This graph was created by crawling the YouTube site in 2007
and creating directed edges between a pair of users a and b

if a’s profile page linked to b’s profile page. Ground-truth
communities were assigned by collecting all users belong-
ing to the same group, which were pages that allowed com-
munications between users on given topics. The graph has
1,134,890 vertices, 2,987,624 edges, and 8,385 communities.
We selected all communities with over 100 users of which
there were 105. The largest community has 2,217 users.
There is an inherent complementariness between role dis-

covery and community detection. The former is about struc-
tural similarity; while the latter is based on proximity in the
graph. Role discovery finds functions/roles of users but does
not find the communities themselves. However, there may
be multiple interesting sets of communities within the same
network and those communities may be characterized by
very di↵erent roles. In this experiment, we encode the set
of ground-truth communities for which our role discovery
technique should find roles.
The way we encode the YouTube ground-truth commu-

nities into our analysis is by providing the communities as
G⇤ to our alternative role discovery formulation. This will
force our discovered roles to have a role assignment that is
di↵erent than ground-truth communities, which matches the
semantic relationship between the two problems.
To evaluate the e↵ectiveness of this result we measured

the proportion of members in each community belonging to
each role. We then calculated the standard deviation over all
such communities per role and report the results in Table 4.
The assumption for this evaluation is that each role should
be equally represented in each community. Our results show
that the alternative role discovery formulation can indeed be
used to normalize the roles with respect to a set of ground-
truth communities. After applying sense-making [14], the
six roles that our GLRD(Alternative) finds are as follows:

Alternative Role 1: Nodes here are global hubs. They
have high PageRank values, high out-degrees, and high
biconnected component numbers.

Alternative Role 2: Nodes here are on the periphery of
the graph. They have higher than default eccentricity.

Alternative Role 3: Nodes here are authorities. They have
high PageRank values and high in-degrees.

Alternative Role 4: Nodes here are very cliquey. They
have high clustering coe�cients.

Alternative Role 5: Nodes here are local hubs. They have
high out-degrees and high biconnected component num-
bers.

Alternative Role 6: Nodes here are the majority of the
population; they are the “regular” folks. They have a
local neighborhood that is more cliquey than expected
but otherwise nothing special stands out.

6. CONCLUSION
Role discovery is an emerging and important area of graph

mining. It looks at discovering nodes that perform similar
functions in networks, but do not necessarily belong to the
same community. Existing work so far has been completely
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Modeling Dynamic Graphs with Roles 

•  Introduced by Rossi et al. WSDM 2013 
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Dynamic Behavioral  
Mixed-Membership (DBMM) Model 

•  Scalable for BIG graphs    
•  Easily parallelizable  
•  Non-parametric & data-driven   
•  Flexible and interpretable 
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Dynamic Behavioral  
Mixed-Membership (DBMM) Model 
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Predicting Structural Behavior 

DBMM is more accurate at predicting future behavior than baselines  
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Given Gt-1  and Gt find a transition 
model T that minimizes the functional: 
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Dynamic Network Analysis with Roles 
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Anomalous Structural Transitions 
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Roles: Regular Equivalence vs. Role Discovery 

Role Discovery Regular Equivalence 

Mixed-membership over roles ✓ 

Automatically selects the best model ✓ 

Can incorporate arbitrary features ✓ 

Uses structural features ✓ 

Uses structure ✓ ✓ 

Generalizes across disjoint networks 
(longitudinal & cross-sectional) ✓ ? 

Scalable (linear on # of edges) ✓ 

Guidance ✓ 
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Roadmap 
•  What are roles 
•  Roles and communities 
•  Roles and equivalences (from sociology) 
•  Roles (from data mining) 
•  Summary 
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Summary 
•  Roles  

–  Structural behavior (“function”) of nodes 

–  Complementary to communities 

–  Previous work mostly in sociology under equivalences 

–  Recent graph mining work produces mixed-
membership roles, is fully automatic and scalable 

–  Can be used for many tasks: transfer learning, re-
identification, anomaly detection, etc 

–  Extensions: including guidance, modeling dynamic 
networks, etc 
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Back to Overview 

Roles 

Features 

Anomalies 

Patterns 

= rare roles 
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