INCREASING THE SIZE OF PARTIALLY OBSERVED NETWORKS

Sucheta Soundarajan
Syracuse Univ.

Tina Eliassi-Rad
Northeastern Univ.

Brian Gallagher
LLNL

Ali Pinar
Sandia Labs
Incomplete Networks

- Networked representations of physical and social phenomena are often incomplete because the phenomena is partially observed.
- Working with incomplete networks can skew analyses.
- Hoping to acquire the full data is often unrealistic.
- But, may be able to collect data selectively to enrich the incomplete network.
Issues to Consider

Goal

- Observe as many new nodes as possible
- Find triangles in the incomplete network
- ...

Type of queries allowed

- Can ask for and obtain:
 - all the edges of a node
 - a random edge of a node
 - the last k communications made by a node
- ...

Issues to Consider

Goal

- Observe as many new nodes as possible
- Find triangles in the incomplete network
- …

Type of queries allowed

- Can ask for and obtain:
 - all the edges of a node
 - a random edge of a node
 - the last k communications made by a node
- …
MaxOutProbe
Problem Definition

- **Given**
 - An incomplete network \hat{G} that is part of a larger, unseen network G
 - A probing budget $b > 0$

- **Goal**
 - Select b nodes from \hat{G} that, when probed (in batch), bring as many new nodes as possible into \hat{G}

- **Assumption**
 - When a node is probed, **all** of its neighbors from G are observed
Running Example: \hat{G}
Running Example

Which yellow nodes are adjacent to many green nodes?
Running Example: Which yellow nodes are adjacent to many green nodes?
MaxOutProbe: Outline

1. Using \hat{G}, estimate each node u’s true degree d_u in G

2. Estimate the number of neighbors u has inside \hat{G}
 - Using \hat{G}, estimate the average clustering coefficient C of G

3. Using #1 and #2, estimate the number of neighbors u has outside \hat{G}
MaxOutProbe (cont.)

\[d_{u}^{out} = d_{u} - d_{u}^{in} = d_{u} - \left(d_{u}^{known} + d_{u}^{unknown} \right) \]
MaxOutProbe (cont.)

\[d_u^{out} = d_u - d_u^{in} = d_u - (d_u^{known} + d_u^{unknown}) \]
Estimating Degrees d_u

- Calculate the average scaling factor s such that on average, a node’s true degree can be approximated by s times its observed degree.
- How do we calculate s?
 - Sample a small number of high degree nodes from \hat{G}
 - Observe the ratio of their true degrees to their observed degrees.
Estimating Internal Degrees

• Challenge
 • Given the structure of \hat{G}, how can we estimate the number of neighbors a node has inside \hat{G}?

• Observation: Nodes tend to cluster
 • If u has many friends-of-friends inside \hat{G}, chances are u is connected to some of them

• How many?
 • Use clustering coefficient to figure it out
 • Among the wedges, what fraction are closed triangles?
Running Example

- u has 4 friends-of-friends (red-lined yellow circles)
- $C = \text{estimate of graph's clustering coefficient}$
- Estimate that u is connected to $4C$ of these nodes
Estimating C

• Reuse nodes probed during degree-estimation step

• When probed, what fraction of their friends-of-friends were they connected to?
Unbiased Estimates

• **IF** we know that

 • \hat{G} was produced by sampling nodes or edges uniformly at random from G, **AND**

 • the size of G

• **THEN** we can get unbiased estimates of s and C

Experiments
Datasets

<table>
<thead>
<tr>
<th>Network</th>
<th># of Nodes</th>
<th># of Edges</th>
<th>Transitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter Retweets</td>
<td>40K</td>
<td>46K</td>
<td>0.03</td>
</tr>
<tr>
<td>Twitter Replies</td>
<td>261K</td>
<td>309K</td>
<td>0.002</td>
</tr>
<tr>
<td>Enron Emails</td>
<td>84K</td>
<td>326K</td>
<td>0.08</td>
</tr>
<tr>
<td>Yahoo! IM</td>
<td>100K</td>
<td>595K</td>
<td>0.08</td>
</tr>
<tr>
<td>Amazon Books</td>
<td>270K</td>
<td>741K</td>
<td>0.21</td>
</tr>
<tr>
<td>Youtube Videos</td>
<td>167K</td>
<td>1M</td>
<td>0.007</td>
</tr>
</tbody>
</table>
Baseline & Competing Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HighDeg</td>
<td>Select nodes with the highest degree.</td>
</tr>
<tr>
<td>LowDeg</td>
<td>Select nodes with the lowest degree.</td>
</tr>
<tr>
<td>HighDisp</td>
<td>Select nodes with the highest dispersion.</td>
</tr>
<tr>
<td>LowDisp</td>
<td>Select nodes with the lowest dispersion.</td>
</tr>
<tr>
<td>CrossCom</td>
<td>Select nodes with the highest fraction of neighbors outside of their community (detected by Louvain Method).</td>
</tr>
<tr>
<td>HighCC</td>
<td>Select nodes with the highest clustering coefficients.</td>
</tr>
<tr>
<td>LowCC</td>
<td>Select nodes with the lowest clustering coefficients.</td>
</tr>
<tr>
<td>Random</td>
<td>Randomly select nodes from the sample.</td>
</tr>
</tbody>
</table>
Experimental Setup

• 20 trials
• Sample 10% of G’s edges using:
 • Random node sampling
 • Random edge sampling
 • Random walk
 • Random walk with jumps
• Run experiments at budgets b in \{1\%, 2\%, 3\%, 4\%, 5\%\} of the # of nodes in each network
• Evaluate the quality of the enhanced graph by counting how many nodes it has
Results

- Compared to random probing, MaxOutProbe outperforms High Degree probing (the best baseline) by 4% - 36% on average
Results

- Small improvements are because of tiny clustering coefficients

Twitter Replies, C = 0.002, Random Walk Sample
Summary of MaxOutProbe

• Goal: Observe as many new nodes as possible
• Query: Returns all the edges of a node
• MaxOutProbe
 • Makes no assumptions about how the incomplete graph with generated or observed
 • Takes clustering coefficient into account
 • Improves performance over the best baseline algorithm (i.e., high-degree) by 4% to 36%
 • Improvement depends on G’s clustering coefficient
 • Tiny C, less improvement
Thank You!

• Funded by LLNL, NSF, DARPA, and DTRA

• Paper:

• Question to ssoundarajan@gmail.com