Cooperative Computing for Autonomous Data Centers

Jared Saia (U. New Mexico)
Joint with: Jon Berry (Sandia),
Aaron Kearns (U. New Mexico)
Cindy Phillips (Sandia)
Outline

Bounding clustering coefficients

An application: Cooperative Computing
The **PLB assumption** holds for a network if, for some $\alpha > 1$:

The number of vertices with degree $\geq k$ is $O(n k^{1-\alpha})$
The **PLBN Assumption** holds for a network if for some α, $2 < \alpha < 3$:

For every vertex v, of degree d, the number of neighbors of v of degree $\geq d$ is: $O(d^{3-\alpha})$
Edge Weights

Consider an edge \((u,v)\)

Let \(d_u, d_v\) be the degrees of \(u, v\)

Let \(t\) be the number of triangles containing \((u,v)\)

Edge Weight: \(\frac{2t}{d_u + d_v - 2}\)
Bounded Weighted Degree (BWD) Assumption

For any human node, the sum of the weights of edges on that node is $\leq c$, where c is a universal constant.

Inspired by Dunbar-like argument
Weighted Degrees

Extremely unlikely any vertex has weighted degree above 40.
Edge Weights Revisited

Let d_u, d_v be the degrees of u, v

Let t be the number of triangles containing (u,v)

Edge Weight 1: $2t / (d_u + d_v - 2)$

Edge Weight 2: $t / (d_u + d_v - t)$

Both of these greater than:

$t / (d_u + d_v)$
O\(d^{4-\alpha}\) triangle bound

Assume:

PLBN: Number of neighbors of v with degree \(\geq d\) is \(O(d^{3-\alpha})\)

BWD: Sum of edge weights touching v is \(O(1)\)

Then:

Number of triangles v is in is \(O(d^{4-\alpha})\)
Proof Sketch (1)

Neighbors with degree $\geq d$

Each is in $O(d)$ triangles with v

$O(d^3 - \alpha)$ of them (by PLBN)

Contribute $O(d^4 - \alpha)$ triangles
Proof Sketch (2)

Neighbors with degree $< d$

Let $x = \#$ of triangles these nodes contribute

Claim: Sum of edge weights is minimized when x is evenly distributed

Then, sum of edge weights is: $\Omega(d((x/d)/d)) = \Omega(x/d)$

By the BWD Assumption, this sum is $O(1)$.

Thus $x = O(d)$
Clustering Coefficient

Consider a node v, with degree d

Clustering coefficient of v:

\[
\frac{\text{# of triangles containing v}}{(d \choose 2)}
\]

Prediction: clustering coefficient is \(O(d^{2-\alpha})\)
Cleaning Networks
Removing Non-human Nodes

Can buy 500 followers for $5 on Twitter

Non-human nodes can be densely connected

Our goal: remove non-human nodes
Removing Non-human Nodes

Our approach (sketch):

Remove nodes based on significant deviation from average weighted degree

Cross-validate with human labelling and labelling based on non-topological features

Cleaning removes few human nodes, among those we checked by hand

Does our Bound on Clustering Coefficients Hold on Cleaned Networks?
Youtube and Twitter
Power Law Bounds on Degree Distributions

Clustering Coefficients

Youtube (cleaned 6-σ) +
Twitter (cleaned 6-σ) ×

α = 2.2
α' = 0.8
LiveJournal and Friendster
Clustering Coefficients

Power Law Bounds on Degree Distributions

Frequency vs. Degree

LiveJournal
Frienster
\(\alpha = 2.5 \)
\(\alpha = 2.666 \)

Clustering Coefficient

Degree

LiveJournal (cleaned 6-\(\sigma \))
Frienster
\(\alpha' = 0.5 \)
\(\alpha' = 0.333 \)
The Takeaway

Preliminary experiments suggest clustering coefficient is $O(d^{2-\alpha})$

Hidden constant seems fairly small

Not necessarily tight

Only holds after cleaning
Our Application:
Cooperative Computing
Cooperative Computing

Alice and Bob (or more) have graphs G_A and G_B

Share the name space for nodes

Cooperate to solve problems on $G_A \cup G_B$

Goal: limit total communication
Previous Work: Algorithms for s-t connectivity

Assumes social network structure: giant component

\(O(\log^2 n)\) communication cost

Can ensure players get no information beyond the output in honest-but-curious model

Finding a clique in $G_A \cup G_B$

Adversary plants a clique of say polylog nodes

Assigns the edges to Alice and Bob

Can we find the clique with little communication?
Finding a clique in $G_A \cup G_B$

Q: Can social network structure help us?

A: Bound the number of naturally occurring triangles

Decreases communication costs
Questions?
References

Edge Weight 2: [Easley, David, and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010.]