Sampling a Uniform Node

Ravi Kumar

Google

Acknowledgments

- Joint work with Flavio Chierichetti, Anirban
 Dasgupta, Silvio Lattanzi, Tamas Sarlos
- ◆ To appear in WWW 2016

Sampling

- Critical tool to understand and analyze large graphs
 - · Study graph properties using samples
- Only realistic option in many situations
 - Evolving graph
 - Full graph not accessible
- Important to have provably good algorithms
 - Sample quality ⇒ output quality

Graph access model

How to access the graph and what information is available to the algorithm?

- Can query any node by its name and get its out neighborhood
 - Subscribes to standard crawling model
 - Applies to both Web and social networks
- A small number of (truly random) nodes are available
- This access model supports random walks on the graph
- Querying is an expensive operation
 - Algorithms should minimize number of queries

Problem definition

- G = (V, E) be an undirected, connected graph
 - n = #nodes, m = #edges
- ◆ D = a distribution on V
- ε = error parameter

Problem. Using the graph access model, output a node in G according to D (to within ϵ additive error)

 $Pr[algorithm outputs v] \approx D(v) \pm \varepsilon$

Measure #steps, #queries

An easy case

- Degree-proportional case (ie, uniform edge)
 - D₁(v) ~ d(v)
- Solution: do a uniform random walk on the graph
- Fact. Limiting distribution of the walk is D1
- Fact. Expected number of steps is the mixing time (t_{mix}) of the graph

Uniform distribution

- Output a node uniform at random
 - $D_0(v) = 1/n$

Rejection sampling

Generate and reject

- Uniform random walk for t_{mix} steps
- Reached a node u
- With probability proportional to 1/d(u),
 output u and stop
- Otherwise, go to first step starting from u

Analysis

Assume minimum degree is 1

Claim.
$$E[\#queries] = E[\#steps] = O(t_{mix} \cdot d_{avg})$$

Proof. Generates u according to D_1 and outputs u wp 1/d(u). Probability of outputting some node

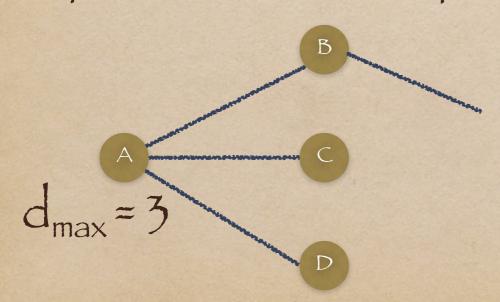
$$\Sigma_{u} \Pr[U=u] \times 1/d(u) = \Sigma_{u} d(u)/(2m) \times 1/d(u)$$

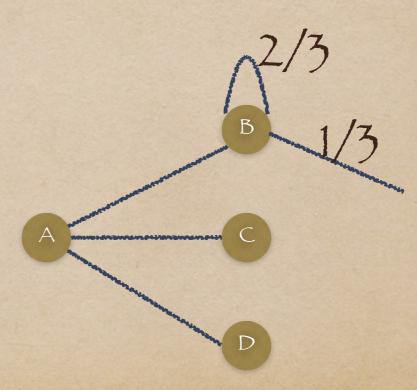
$$= \Sigma_u 1/(2m) = n / 2m = 1/d_{avg}$$

Repeat this day times to obtain a sample

Max-degree (MD) walk

- Make the graph uniform degree by spending more time at low degree nodes
 - Uniform random walk on modified graph generates D_o
- Use max degree (d_{max}) to define transitions
- #queries could be « #steps





MD Analysis Claim. The steady-state of MD is Do

Claim. E[#steps] spent at node u is d_{max}/d(u)

Claim. For any real-valued function f

$$\Sigma_{uv} (f(u) - f(v))^2 d(u) d(v)$$

$$---- \ge (1/2) d_{avg}$$

$$\Sigma_{uv} (f(u) - f(v))^2$$

MD Analysis (contd)

Use the variational characterization

$$\Sigma_{uv} (f(u) - f(v))^2 \pi(u) P(u, v)$$

$$\Sigma_{uv} (f(u) - f(v))^2 \pi(u) \pi(v)$$

• Relate λ_2 of MD and original walk using this

Fact.
$$t_{mix} \le 1/(1-\lambda_2) \log n$$

Claim.
$$E[\#steps] = \tilde{O}(t_{mix} \cdot d_{avg})$$

Metropolis-Hastings (MH) walk

- A way to sample from any target distribution D starting from an arbitrary transition matrix Q
 - ◆ Current state = u
 - Generate v ~ Q(u, ·)
 - Move to v wp min(1, (Q(v, u) D(u)) / (Q(u, v) D(v)))
- Fact. Steady-state of MH walk is D
- If D = D and Q is given by the graph

 $Pr[u \rightarrow v] = 1/d(u) \cdot min(1, d(u)/d(v)) = 1/max(d(u), d(v))$

MH Analysis

Claim. $E[\#steps] = \tilde{O}(t_{mix} \cdot d_{max})$

Proof. Use the variational characterization and steps as before

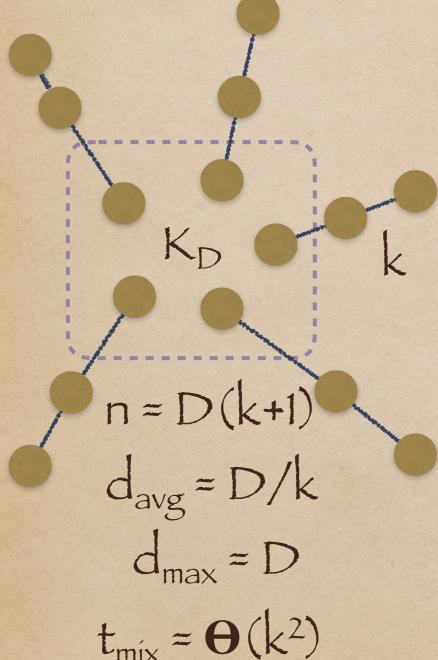
Tightness

Claim. For MD, $E[steps] \ge \Omega(t_{mix} d_{max})$

Proof. $o(k^2)$ non-self loop steps will miss constant fraction of path nodes

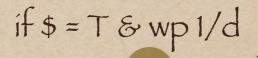
To be close to D_0 we need $\Omega(k^2)$ steps

Self-loop steps on path nodes is $\Omega(D)$



Lower bounds: $\Omega(d_{avg})$

$$G(n, d/n) +$$



- $d_{avg} = d$, $t_{mix} = O(log n / log d)$
- Distance between Doforc = Handc = Tis 1/2 o(1)
- #queries = $o(d) \Rightarrow$ query only unchanged nodes wp 1 o(1)

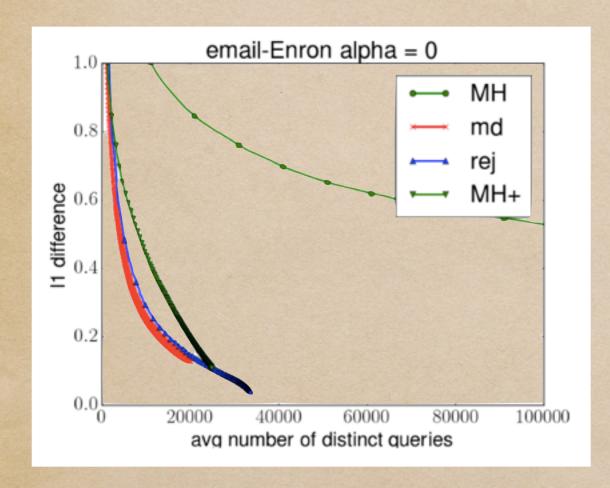
Lower bounds: $\Omega(t_{mix})$

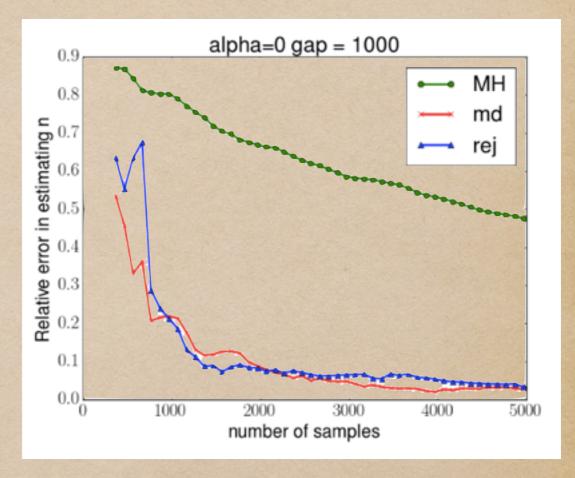
Claim. Any algorithm for D_0 must issue $\Omega(t_{mix})$ queries

Experiments

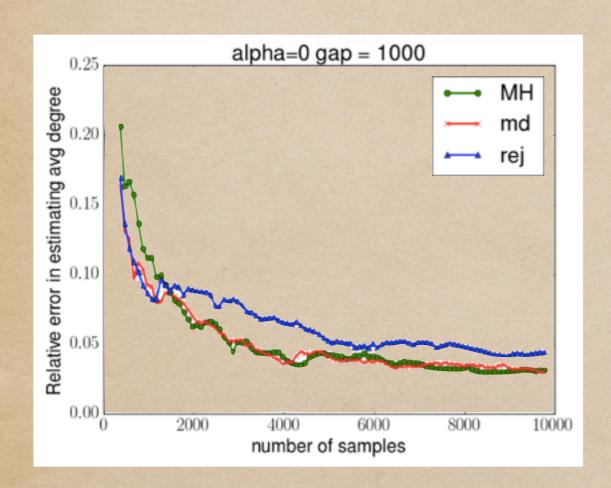
- Uniformity of the samples
 - Strict criterion
- Quality of estimators based on samples
 - Size of the network
 - Average degree
 - Clustering coefficient

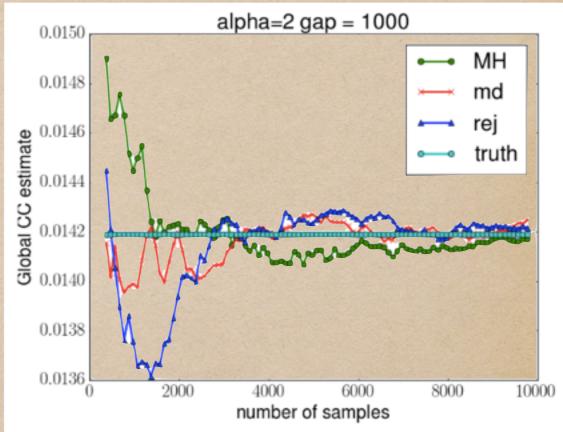
Results





Results (contd)





Summary

- Bounds on generating a uniform node
 - Can extend to other distributions on V
- Lower bound is not tight
 - Conjecture: #queries $\geq \Omega(d_{avg} \cdot t_{mix})$
- A better notion of mixing time for social graphs
 - Average-case notion?

Thank you!

Questions/Comments: ravi.k53 @ gmail