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Sampling
Critical tool to understand and analyze large 
graphs 

Study graph properties using samples 
Only realistic option in many situations 

Evolving graph 
Full graph not accessible 

Important to have provably good algorithms 
Sample quality ⇒ output quality



Graph access model
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How to access the graph and what information is available to the algorithm? 

Can query any node by its name and get its out neighborhood 

Subscribes to standard crawling model 

Applies to both Web and social networks 

A small number of (truly random) nodes are available 

This access model supports random walks on the graph  

Querying is an expensive operation 

Algorithms should minimize number of queries



Problem definition
G = (V, E) be an undirected, connected graph 

n = #nodes,  m = #edges 

D = a distribution on V 

𝛆 = error parameter 

Problem. Using the graph access model, output a node in G according 
to D (to within 𝛆 additive error) 

Pr[algorithm outputs v] ≈ D(v)± 𝛆  

Measure #steps, #queries



An easy case
Degree-proportional case (ie, uniform edge) 

D1(v) ∝	d(v) 

Solution: do a uniform random walk on the graph 

Fact. Limiting distribution of the walk is D1 

Fact.  Expected number of steps is the mixing time 
(tmix) of the graph



Uniform distribution

Output a node uniform at random  

D0(v) = 1/n



Rejection sampling
Generate and reject 

Uniform random walk for tmix steps 

Reached a node u 

With probability proportional to 1/d(u),  
output u and stop 

Otherwise, go to first step starting from u



Analysis
Assume minimum degree is 1 

Claim. E[#queries] = E[#steps] = O(tmix ∙ davg) 

Proof.  Generates u according to D1 and outputs u wp  1/d(u).  
Probability of outputting some node 

𝚺u Pr[U = u] × 1/d(u) = 𝚺u d(u)/(2m) × 1/d(u)  

= 𝚺u  1/(2m) = n / 2m = 1/davg 

Repeat this davg times to obtain a sample



Max-degree (MD) walk
Make the graph uniform degree by spending more time at low 
degree nodes 

Uniform random walk on modified graph generates D0 

Use max degree (dmax) to define transitions 

#queries could be ≪ #steps
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MD Analysis
Claim. The steady-state of MD is D0 

Claim. E[#steps] spent at node u is dmax/d(u) 

Claim. For any real-valued function f 

𝚺uv (f(u) - f(v))2 d(u) d(v)              

      ———————————— —-  ≥ (1/2) davg  

            𝚺uv (f(u) - f(v))2



MD Analysis (contd)
Use the variational characterization 

                            𝚺uv (f(u) - f(v))2 𝛑(u) P(u, v)               

1 - 𝛌2 = inff     ———————————— —-   

                  𝚺uv (f(u) - f(v))2 𝛑(u) 𝛑(v) 

Relate 𝛌2 of MD and original walk using this 

Fact. tmix ≤ 1/(1 - 𝛌2) log n 

Claim. E[#steps] = Õ(tmix ∙ davg )



Metropolis-Hastings (MH) walk

A way to sample from any target distribution D starting from an 
arbitrary transition matrix Q 

Current state = u 

Generate v  Q(u, ∙) 

Move to v wp min(1, (Q(v, u) D(u)) / (Q(u, v) D(v))) 

Fact.  Steady-state of MH walk is D 

If D = D
0
 and Q is given by the graph 

Pr[u → v] = 1/d(u)∙ min(1, d(u)/d(v)) = 1/max(d(u), d(v))



MH Analysis

Claim. E[#steps] = Õ(tmix ∙ dmax ) 

Proof. Use the variational characterization and 
steps as before



Claim.  For MD, E[steps] ≥ 𝛀(tmix 

dmax) 

Proof. o(k2) non-self loop steps will 
miss constant fraction of path nodes 

To be close to D0 we need 𝛀(k2) 
steps 

Self-loop steps on path nodes is 
𝛀(D)

Tightness

KD k

n = D(k+1) 
davg = D/k 
 dmax = D 

tmix = 𝚹(k2)



Lower bounds: 𝛀(davg)

davg = d, tmix = O(log n / log d) 

Distance between D0 for c = H and c = T is 1/2 - o(1) 

#queries = o(d)⇒ query only unchanged nodes wp 1 - o(1)  

G(n, d/n) + $ if $ = T & wp 1/d



Lower bounds: 𝛀(tmix)

Claim. Any algorithm for D0 must issue 𝛀(tmix) 
queries 



Experiments
Uniformity of the samples 

Strict criterion 

Quality of estimators based on samples 

Size of the network 

Average degree 

Clustering coefficient



Results



Results (contd)



Summary
Bounds on generating a uniform node 

Can extend to other distributions on V 

Lower bound is not tight 

Conjecture: #queries ≥ 𝛀(davg∙ tmix) 

A better notion of mixing time for social graphs 

Average-case notion?



Thank you!

Questions/Comments: ravi.k53 @ gmail


