
Sampling a Uniform Node
Ravi Kumar

Google

Acknowledgments

Joint work with Flavio Chierichetti, Anirban
Dasgupta, Silvio Lattanzi, Tamas Sarlos

To appear in WWW 2016

Sampling
Critical tool to understand and analyze large
graphs

Study graph properties using samples
Only realistic option in many situations

Evolving graph
Full graph not accessible

Important to have provably good algorithms
Sample quality ⇒ output quality

Graph access model

A

D

C

B

How to access the graph and what information is available to the algorithm?

Can query any node by its name and get its out neighborhood

Subscribes to standard crawling model

Applies to both Web and social networks

A small number of (truly random) nodes are available

This access model supports random walks on the graph

Querying is an expensive operation

Algorithms should minimize number of queries

Problem definition
G = (V, E) be an undirected, connected graph

n = #nodes, m = #edges

D = a distribution on V

𝛆 = error parameter

Problem. Using the graph access model, output a node in G according
to D (to within 𝛆 additive error)

Pr[algorithm outputs v] ≈ D(v)± 𝛆

Measure #steps, #queries

An easy case
Degree-proportional case (ie, uniform edge)

D1(v) ∝	d(v)

Solution: do a uniform random walk on the graph

Fact. Limiting distribution of the walk is D1

Fact. Expected number of steps is the mixing time
(tmix) of the graph

Uniform distribution

Output a node uniform at random

D0(v) = 1/n

Rejection sampling
Generate and reject

Uniform random walk for tmix steps

Reached a node u

With probability proportional to 1/d(u),
output u and stop

Otherwise, go to first step starting from u

Analysis
Assume minimum degree is 1

Claim. E[#queries] = E[#steps] = O(tmix ∙ davg)

Proof. Generates u according to D1 and outputs u wp 1/d(u).
Probability of outputting some node

𝚺u Pr[U = u] × 1/d(u) = 𝚺u d(u)/(2m) × 1/d(u)

= 𝚺u 1/(2m) = n / 2m = 1/davg

Repeat this davg times to obtain a sample

Max-degree (MD) walk
Make the graph uniform degree by spending more time at low
degree nodes

Uniform random walk on modified graph generates D0

Use max degree (dmax) to define transitions

#queries could be ≪ #steps

A

D

C

B

A

D

C

B

dmax = 3

2/3

1/3

MD Analysis
Claim. The steady-state of MD is D0

Claim. E[#steps] spent at node u is dmax/d(u)

Claim. For any real-valued function f

𝚺uv (f(u) - f(v))2 d(u) d(v)

 ———————————— —- ≥ (1/2) davg

 𝚺uv (f(u) - f(v))2

MD Analysis (contd)
Use the variational characterization

 𝚺uv (f(u) - f(v))2 𝛑(u) P(u, v)

1 - 𝛌2 = inff ———————————— —-

 𝚺uv (f(u) - f(v))2 𝛑(u) 𝛑(v)

Relate 𝛌2 of MD and original walk using this

Fact. tmix ≤ 1/(1 - 𝛌2) log n

Claim. E[#steps] = Õ(tmix ∙ davg)

Metropolis-Hastings (MH) walk

A way to sample from any target distribution D starting from an
arbitrary transition matrix Q

Current state = u

Generate v Q(u, ∙)

Move to v wp min(1, (Q(v, u) D(u)) / (Q(u, v) D(v)))

Fact. Steady-state of MH walk is D

If D = D
0
 and Q is given by the graph

Pr[u → v] = 1/d(u)∙ min(1, d(u)/d(v)) = 1/max(d(u), d(v))

MH Analysis

Claim. E[#steps] = Õ(tmix ∙ dmax)

Proof. Use the variational characterization and
steps as before

Claim. For MD, E[steps] ≥ 𝛀(tmix

dmax)

Proof. o(k2) non-self loop steps will
miss constant fraction of path nodes

To be close to D0 we need 𝛀(k2)
steps

Self-loop steps on path nodes is
𝛀(D)

Tightness

KD k

n = D(k+1)
davg = D/k
 dmax = D

tmix = 𝚹(k2)

Lower bounds: 𝛀(davg)

davg = d, tmix = O(log n / log d)

Distance between D0 for c = H and c = T is 1/2 - o(1)

#queries = o(d)⇒ query only unchanged nodes wp 1 - o(1)

G(n, d/n) + $ if $ = T & wp 1/d

Lower bounds: 𝛀(tmix)

Claim. Any algorithm for D0 must issue 𝛀(tmix)
queries

Experiments
Uniformity of the samples

Strict criterion

Quality of estimators based on samples

Size of the network

Average degree

Clustering coefficient

Results

Results (contd)

Summary
Bounds on generating a uniform node

Can extend to other distributions on V

Lower bound is not tight

Conjecture: #queries ≥ 𝛀(davg∙ tmix)

A better notion of mixing time for social graphs

Average-case notion?

Thank you!

Questions/Comments: ravi.k53 @ gmail

